On generalized Fibonacci cubes and unitary transforms

被引:19
|
作者
Egiazarian, K [1 ]
Astola, J [1 ]
机构
[1] TAMPERE UNIV TECHNOL,SIGNAL PROC LAB,FIN-33101 TAMPERE,FINLAND
关键词
Boolean cube; Fibonacci cube; Zeckendorf's representation; unitary transforms; fast algorithms;
D O I
10.1007/s002000050074
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new interconnection topology called generalized Fibonacci topology, which unifies a wide range of connection topologies such as the Boolean cube (or hypercube), classical Fibonacci cube, etc. Some basic topological properties of generalized Fibonacci cubes are established. Finally, we developed new classes of the discrete orthogonal transforms, based on the generalized Fibonacci recursions. They can be implemented efficiently by butterfly-type networks (like the Fourier, or the Haar transforms). A generalized Fibonacci cube based processor architecture (generalizing the known SIMD architecture - hypercube processor) can be efficiently used for hardware implementation of the proposed discrete orthogonal transforms.
引用
收藏
页码:371 / 377
页数:7
相关论文
共 50 条
  • [21] Decycling of Fibonacci cubes
    Ellis-Monaghan, Joanna A.
    Pike, David A.
    Zout, Yubo
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 31 - 40
  • [22] Enhanced Fibonacci cubes
    Qian, HF
    Wu, J
    [J]. COMPUTER JOURNAL, 1996, 39 (04): : 331 - 345
  • [23] FIBONACCI AND LUCAS CUBES
    LAGARIAS, JC
    WEISSER, DP
    [J]. FIBONACCI QUARTERLY, 1981, 19 (01): : 39 - 43
  • [24] Extended Fibonacci Cubes
    Wu, J
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1997, 8 (12) : 1203 - 1210
  • [26] Asymptotic Properties of Fibonacci Cubes and Lucas Cubes
    Sandi Klavžar
    Michel Mollard
    [J]. Annals of Combinatorics, 2014, 18 : 447 - 457
  • [27] Edges in Fibonacci Cubes, Lucas Cubes and Complements
    Michel Mollard
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 4425 - 4437
  • [28] Asymptotic Properties of Fibonacci Cubes and Lucas Cubes
    Klavzar, Sandi
    Mollard, Michel
    [J]. ANNALS OF COMBINATORICS, 2014, 18 (03) : 447 - 457
  • [29] Observability of the extended Fibonacci cubes
    Whitehead, C
    Salvi, NZ
    [J]. DISCRETE MATHEMATICS, 2003, 266 (1-3) : 431 - 440
  • [30] Structure of Fibonacci cubes: a survey
    Klavzar, Sandi
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (04) : 505 - 522