On generalized Fibonacci cubes and unitary transforms

被引:19
|
作者
Egiazarian, K [1 ]
Astola, J [1 ]
机构
[1] TAMPERE UNIV TECHNOL,SIGNAL PROC LAB,FIN-33101 TAMPERE,FINLAND
关键词
Boolean cube; Fibonacci cube; Zeckendorf's representation; unitary transforms; fast algorithms;
D O I
10.1007/s002000050074
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new interconnection topology called generalized Fibonacci topology, which unifies a wide range of connection topologies such as the Boolean cube (or hypercube), classical Fibonacci cube, etc. Some basic topological properties of generalized Fibonacci cubes are established. Finally, we developed new classes of the discrete orthogonal transforms, based on the generalized Fibonacci recursions. They can be implemented efficiently by butterfly-type networks (like the Fourier, or the Haar transforms). A generalized Fibonacci cube based processor architecture (generalizing the known SIMD architecture - hypercube processor) can be efficiently used for hardware implementation of the proposed discrete orthogonal transforms.
引用
收藏
页码:371 / 377
页数:7
相关论文
共 50 条
  • [1] On Generalized Fibonacci Cubes and Unitary Transforms
    Karen Egiazarian
    Jaakko Astola
    [J]. Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 371 - 377
  • [2] Generalized Fibonacci cubes
    Ilic, Aleksandar
    Klavzar, Sandi
    Rho, Yoomi
    [J]. DISCRETE MATHEMATICS, 2012, 312 (01) : 2 - 11
  • [3] Connectivity of Fibonacci cubes, Lucas cubes, and generalized cubes
    Azarija, Jernej
    Klavzar, Sandi
    Lee, Jaehun
    Rho, Yoomi
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 79 - 88
  • [4] On the Wiener index of generalized Fibonacci cubes and Lucas cubes
    Klavzar, Sandi
    Rho, Yoomi
    [J]. DISCRETE APPLIED MATHEMATICS, 2015, 187 : 155 - 160
  • [5] On isomorphism classes of generalized Fibonacci cubes
    Azarija, Jernej
    Klavzar, Sandi
    Lee, Jaehun
    Pantone, Jay
    Rho, Yoomi
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 : 372 - 379
  • [6] GENERALIZED FIBONACCI CUBES ARE MOSTLY HAMILTONIAN
    LIU, JS
    HSU, WJ
    CHUNG, MJ
    [J]. JOURNAL OF GRAPH THEORY, 1994, 18 (08) : 817 - 829
  • [7] Cube-complements of generalized Fibonacci cubes
    Vesel, Aleksander
    [J]. DISCRETE MATHEMATICS, 2019, 342 (04) : 1139 - 1146
  • [8] Asymptotic number of isometric generalized Fibonacci cubes
    Klavzar, Sandi
    Shpectorov, Sergey
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (02) : 220 - 226
  • [9] A negative answer to a problem on generalized Fibonacci cubes
    Wei, Jianxin
    Zhang, Heping
    [J]. DISCRETE MATHEMATICS, 2017, 340 (02) : 81 - 86
  • [10] Proofs of two conjectures on generalized Fibonacci cubes
    Wei, Jianxin
    Zhang, Heping
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 : 419 - 432