A Hybrid PCA-LDA Model for Dimension Reduction

被引:0
|
作者
Zhao, Nan [1 ]
Mio, Washington [2 ]
Liu, Xiuwen [1 ]
机构
[1] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
关键词
EIGENFACES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several variants of Linear Discriminant Analysis (LDA) have been investigated to address the vanishing of the within-class scatter under projection to a low-dimensional subspace in LDA. However, some of these proposals are ad hoc and some others do not address the problem of generalization to new data. Meanwhile, even though LDA is preferred in many application of dimension reduction, it does not always outperform Principal Component Analysis (PCA). In order to optimize discrimination performance in a more generative way, a hybrid dimension reduction model combining PCA and LDA is proposed in this paper. We also present a dimension reduction algorithm correspondingly and illustrate the method with several experiments. Our results have shown that the hybrid model outperform PCA, LDA and the combination of them in two separate stages.
引用
收藏
页码:2184 / 2190
页数:7
相关论文
共 50 条
  • [31] 基于生物启发特征与PCA-LDA的人脸识别方法
    李国
    穆国旺
    睢佰龙
    [J]. 河北工业大学学报, 2013, 42 (05) : 80 - 83
  • [32] 红外光谱结合PCA-LDA判别道地和非道地山药
    张芳
    周昊
    徐蓉
    徐寸发
    韩伟
    徐为民
    李勇
    [J]. 江苏农业科学, 2018, 46 (24) : 217 - 220
  • [33] Face Detection and Recognition Using Viola-Jones with PCA-LDA and Square Euclidean Distance
    Barnouti, Nawaf Hazim
    Matti, Wael Esam
    Al-Dabbagh, Sinan Sameer Mahmood
    Naser, Mustafa Abdul Sahib
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (05) : 371 - 377
  • [34] A novel nasopharyngeal cancer detection based on plasma SERS combined with PCA-LDA statistical analysis
    Feng, Shangyuan
    Lin, Juqiang
    Pan, Jianji
    Chen, Jiesi
    Li, Yongzeng
    Wu, Yanan
    Zeng, Haishan
    Chen, Rong
    [J]. OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS IV, 2010, 7845
  • [35] PCA-LDA Analysis of Human and Canine Blood Based on Non-contact Raman Spectroscopy
    Zheng Xiangquan
    Liao Xin
    Xu Yi
    Hong Mingjian
    [J]. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2017, 38 (04): : 575 - 582
  • [36] Characterization and rapid detection of adulterations in sesame oil using FT-MIR and PCA-LDA
    Terouzi, W.
    Rizki, H.
    Kzaiber, F.
    Hanine, H.
    Nabloussi, A.
    Oussama, A.
    [J]. MOROCCAN JOURNAL OF CHEMISTRY, 2016, 4 (04): : 1052 - 1060
  • [37] 基于FT-IR结合PCA-LDA的白酒真伪鉴别方法
    梁俊发
    吴文林
    陈代伟
    万渝平
    涂松林
    陈然
    罗曼妮
    曾苑
    叶玲
    王志雄
    区硕俊
    [J]. 食品工业科技, 2016, 37 (15) : 309 - 312
  • [38] Scores selection via Fisher's discriminant power in PCA-LDA to improve the classification of food data
    de Almeida, Valber Elias
    de Sousa Fernandes, David Douglas
    Goncalves Dias Diniz, Paulo Henrique
    Gomes, Adriano de Araujo
    Veras, Germano
    Harrop Galvao, Roberto Kawakami
    Ugulino Araujo, Mario Cesar
    [J]. FOOD CHEMISTRY, 2021, 363
  • [39] 用PCA-LDA对多环芳烃的致癌性进行分类
    胡兰萍
    葛存旺
    张跃华
    吴蓉
    [J]. 分析科学学报, 2007, (06) : 717 - 719
  • [40] FT-IR spectroscopy supported by PCA-LDA analysis for the study of embryonic stem cell differentiation
    Ami, Diletta
    Natalello, Antonino
    Mereghetti, Paolo
    Neri, Tui
    Zanoni, Mario
    Monti, Manuela
    Doglia, Silvia Maria
    Redi, Carlo Alberto
    [J]. SPECTROSCOPY-AN INTERNATIONAL JOURNAL, 2010, 24 (1-2): : 89 - 97