Fabrication of Maghemite Nanoparticles with High Surface Area

被引:9
|
作者
Trushkina, Yulia [1 ]
Tai, Cheuk-Wai [1 ]
Salazar-Alvarez, German [1 ]
机构
[1] Stockholm Univ, Arrhenius Lab, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden
来源
NANOMATERIALS | 2019年 / 9卷 / 07期
关键词
porous materials; iron oxide; nanostructures; transformation; characterization; IRON-OXIDE NANOPARTICLES; THERMAL-DECOMPOSITION; MICROPORE FORMATION; GAMMA-FEOOH; LEPIDOCROCITE; BATTERY; TRANSFORMATIONS; DEHYDRATION; DIFFRACTION; ADSORPTION;
D O I
10.3390/nano9071004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Maghemite nanoparticles with high surface area were obtained from the dehydroxylation of lepidocrocite prismatic nanoparticles. The synthesis pathway from the precursor to the porous maghemite nanoparticles is inexpensive, simple and gives high surface area values for both lepidocrocite and maghemite. The obtained maghemite nanoparticles contained intraparticle and interparticle pores with a surface area ca. 30 x 10(3) m(2)/mol, with pore volumes in the order of 70 cm(3)/mol. Both the surface area and pore volume depended on the heating rate and annealing temperature, with the highest value near the transformation temperature (180-250 degrees C). Following the transformation, in situ X-ray diffraction (XRD) allowed us to observe the temporal decoupling of the decomposition of lepidocrocite and the growth of maghemite. The combination of high-angle annular dark-field imaging using scanning transmission electron microscopy (HAADF-STEM) and surface adsorption isotherms is a powerful approach for the characterization of nanomaterials with high surface area and porosity.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Surface spin disorder and exchange-bias in hollow maghemite nanoparticles
    Khurshid, Hafsa
    Li, Wanfeng
    Manh-Huong Phan
    Mukherjee, Pritish
    Hadjipanayis, George C.
    Srikanth, Hariharan
    APPLIED PHYSICS LETTERS, 2012, 101 (02)
  • [22] Synthesis and application of maghemite nanoparticles for water treatment: response surface method
    Iqbal, Arfa
    Jalees, Muhammad Irfan
    Farooq, Muhammad Umar
    Cevik, Emre
    Mu'azu, Nuhu Dalhat
    DESALINATION AND WATER TREATMENT, 2021, 244 : 212 - 225
  • [23] Surface and core magnetic anisotropy in maghemite nanoparticles determined by pressure experiments
    Komorida, Y.
    Mito, M.
    Deguchi, H.
    Takagi, S.
    Millan, A.
    Silva, N. J. O.
    Palacio, F.
    APPLIED PHYSICS LETTERS, 2009, 94 (20)
  • [24] High surface area anatase titania nanoparticles prepared by MOCVD
    Sun, YJ
    Li, AZ
    Qi, M
    Zhang, LY
    Yao, X
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 86 (03): : 185 - 188
  • [25] Facile synthesis of high surface area molybdenum carbide nanoparticles
    Nayak, Shanti Kiran
    Benavidez, Angelica D.
    Garzon, Fernando H.
    Journal of the American Ceramic Society, 2019, 102 (06): : 3738 - 3744
  • [26] Facile synthesis of high surface area molybdenum carbide nanoparticles
    Nayak, Shanti Kiran
    Benavidez, Angelica D.
    Garzon, Fernando H.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (06) : 3738 - 3744
  • [27] Preparation of High Surface Area ZrO2 Nanoparticles
    Alaei, Mahshad
    Rashidi, Ali Morad
    Bakhtiari, Iida
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2014, 33 (02): : 47 - 53
  • [28] Synthesis and analysis of high surface area Vanadium Carbide nanoparticles
    Mahajan, M.
    Singh, K.
    Pandey, O. P.
    ADVANCES IN MATERIALS AND PROCESSING: CHALLENGES AND OPPORTUNITIES, 2012, 585 : 95 - 99
  • [29] Palladium infiltration in high surface area microporous silica nanoparticles
    Wang, Jun
    Nelson, Jennifer A.
    White, William B.
    Eklund, Peter C.
    Adair, James H.
    MATERIALS LETTERS, 2006, 60 (29-30) : 3573 - 3576
  • [30] Fabrication of high surface area graphitic nanoflakes on carbon nanotubes templates
    Chen, CC
    Chen, CF
    Lee, IH
    Lin, CL
    DIAMOND AND RELATED MATERIALS, 2005, 14 (11-12) : 1897 - 1900