Fabrication of Maghemite Nanoparticles with High Surface Area

被引:9
|
作者
Trushkina, Yulia [1 ]
Tai, Cheuk-Wai [1 ]
Salazar-Alvarez, German [1 ]
机构
[1] Stockholm Univ, Arrhenius Lab, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden
来源
NANOMATERIALS | 2019年 / 9卷 / 07期
关键词
porous materials; iron oxide; nanostructures; transformation; characterization; IRON-OXIDE NANOPARTICLES; THERMAL-DECOMPOSITION; MICROPORE FORMATION; GAMMA-FEOOH; LEPIDOCROCITE; BATTERY; TRANSFORMATIONS; DEHYDRATION; DIFFRACTION; ADSORPTION;
D O I
10.3390/nano9071004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Maghemite nanoparticles with high surface area were obtained from the dehydroxylation of lepidocrocite prismatic nanoparticles. The synthesis pathway from the precursor to the porous maghemite nanoparticles is inexpensive, simple and gives high surface area values for both lepidocrocite and maghemite. The obtained maghemite nanoparticles contained intraparticle and interparticle pores with a surface area ca. 30 x 10(3) m(2)/mol, with pore volumes in the order of 70 cm(3)/mol. Both the surface area and pore volume depended on the heating rate and annealing temperature, with the highest value near the transformation temperature (180-250 degrees C). Following the transformation, in situ X-ray diffraction (XRD) allowed us to observe the temporal decoupling of the decomposition of lepidocrocite and the growth of maghemite. The combination of high-angle annular dark-field imaging using scanning transmission electron microscopy (HAADF-STEM) and surface adsorption isotherms is a powerful approach for the characterization of nanomaterials with high surface area and porosity.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Phase and surface area studies of maghemite nanoparticles dispersed in silica gel
    Ang, B. C.
    Yaacob, I. I.
    Wong, Y. H.
    MATERIALS RESEARCH INNOVATIONS, 2014, 18 : 32 - 35
  • [2] Surface effects in maghemite nanoparticles
    Millan, A.
    Urtizberea, A.
    Silva, N. J. O.
    Palacio, F.
    Amaral, V. S.
    Snoeck, E.
    Serin, V.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 312 (01) : L5 - L9
  • [3] Surface anisotropy in maghemite nanoparticles
    Restrepo, J.
    Labaye, Y.
    Greneche, J. M.
    PHYSICA B-CONDENSED MATTER, 2006, 384 (1-2) : 221 - 223
  • [4] Synthesis of mesoporous maghemite with high surface area and its adsorptive properties
    Asuha, S.
    Zhao, Y. M.
    Zhao, S.
    Deligeer, W.
    SOLID STATE SCIENCES, 2012, 14 (07) : 833 - 839
  • [5] Nonhydrolytic sol–gel and gram-scale synthesis of surfactant-free maghemite nanoparticles with high surface area
    D. R. Bae
    Y.-J. Lee
    D. K. Kim
    S. W. Lee
    K. S. Chang
    G.-R. Yi
    G. Lee
    Journal of Sol-Gel Science and Technology, 2014, 71 : 606 - 610
  • [6] Facile Gold-coated Maghemite Nanoparticles Fabrication
    He, Quanguo
    Huang, Jingke
    Hu, Rong
    Zeng, Lei
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [7] Nonhydrolytic sol-gel and gram-scale synthesis of surfactant-free maghemite nanoparticles with high surface area
    Bae, D. R.
    Lee, Y. -J.
    Kim, D. K.
    Lee, S. W.
    Chang, K. S.
    Yi, G. -R.
    Lee, G.
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2014, 71 (03) : 606 - 610
  • [8] A glucose biosensor based on surface active maghemite nanoparticles
    Baratella, Davide
    Magro, Massimiliano
    Sinigaglia, Giulietta
    Zboril, Radek
    Salviulo, Gabriella
    Vianello, Fabio
    BIOSENSORS & BIOELECTRONICS, 2013, 45 : 13 - 18
  • [9] Surface effects in nanoparticles: application to maghemite -Fe O
    H. Kachkachi
    A. Ezzir
    M. Noguès
    E. Tronc
    The European Physical Journal B, 2000, 14 : 681 - 689
  • [10] Magnetic domains and surface effects in hollow maghemite nanoparticles
    Cabot, Andreu
    Alivisatos, A. Paul
    Puntes, Victor F.
    Balcells, Lluis
    Iglesias, Oscar
    Labarta, Amilcar
    PHYSICAL REVIEW B, 2009, 79 (09)