COMPOSITION OPERATORS FROM WEAK TO STRONG SPACES OF VECTOR-VALUED ANALYTIC FUNCTIONS

被引:0
|
作者
Laitila, Jussi [1 ]
Tylli, Hans-Olav [1 ]
Wang, Maofa [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
芬兰科学院;
关键词
Composition operator; vector-valued Hardy space; vector-valued Bergman space; COMPACT COMPOSITION OPERATORS; COEFFICIENT MULTIPLIERS; HARMONIC-FUNCTIONS; BERGMAN SPACES; BMOA;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi be an analytic map from the unit disk into itself, X a complex infinite-dimensional Banach space and 2 <= p < infinity. It is shown that the composition operator C phi: f bar right arrow f o phi is bounded wH(p) (X) -> HP (X) if and only if C phi is a Hilbert-Schmidt operator H-2 -> H-2. Here H-p(X) is the X-valued Hardy space and wH(p)(X) is a related weak vector-valued Hardy space. A similar result is established for vector-valued Bergman spaces.
引用
收藏
页码:281 / 295
页数:15
相关论文
共 50 条