Generalized Integration Operators from Weak to Strong Spaces of Vector-valued Analytic Functions

被引:2
|
作者
Chen, Jiale [1 ]
Wang, Maofa [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2021年 / 25卷 / 04期
基金
中国国家自然科学基金;
关键词
generalized integration operator; vector-valued Bergman space; vector-valued Hardy space; vector-valued Fock spaces; BOUNDARY-VALUES; HARDY-SPACES;
D O I
10.11650/tjm/201208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a fixed nonnegative integer m, an analytic map phi and an analytic function, the generalized integration operator I-phi,Psi((m)) is defined by I-phi,psi((m)) f (z) = integral(z)(0) f((m))(phi(zeta))psi(zeta) d zeta for X -valued analytic function f, where X is a Banach space. Some estimates for the norm of the operator I-phi,psi((m)) : wA(alpha)(p) (X) -> A(alpha)(p) (X) are obtained. In particular, it is shown that the Volterra operator J(b) : wA(alpha)(p) (X) -> A(alpha)(p) (X) is bounded if and only if J(b) : A(alpha)(2) -> A(alpha)(2) is in the Schatten class Sp(A(alpha)(2)) for 2 <= p < infinity and alpha > 1. Some corresponding results are established for X-valued Hardy spaces and X -valued Fock spaces.
引用
收藏
页码:757 / 774
页数:18
相关论文
共 50 条