Bistability of patterns of synchrony in Kuramoto oscillators with inertia

被引:46
|
作者
Belykh, Igor V. [1 ,2 ]
Brister, Barrett N. [1 ,2 ]
Belykh, Vladimir N. [3 ,4 ]
机构
[1] Georgia State Univ, Dept Math & Stat, 30 Pryor St, Atlanta, GA 30303 USA
[2] Georgia State Univ, Neurosci Inst, 30 Pryor St, Atlanta, GA 30303 USA
[3] Lobachevsky State Univ Nizhny Novgorod, Dept Control Theory, 23 Gagarin Ave, Nizhnii Novgorod 603950, Russia
[4] Volga State Univ Water Transport, Dept Math, 5A,Nesterov Str, Nizhnii Novgorod 603950, Russia
基金
美国国家科学基金会; 俄罗斯科学基金会;
关键词
NETWORKS; MODEL; STABILITY; DYNAMICS; INCOHERENCE; COHERENCE; LATTICE;
D O I
10.1063/1.4961435
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the co-existence of stable patterns of synchrony in two coupled populations of identical Kuramoto oscillators with inertia. The two populations have different sizes and can split into two clusters where the oscillators synchronize within a cluster while there is a phase shift between the dynamics of the two clusters. Due to the presence of inertia, which increases the dimensionality of the oscillator dynamics, this phase shift can oscillate, inducing a breathing cluster pattern. We derive analytical conditions for the co-existence of stable two-cluster patterns with constant and oscillating phase shifts. We demonstrate that the dynamics, that governs the bistability of the phase shifts, is described by a driven pendulum equation. We also discuss the implications of our stability results to the stability of chimeras. Published by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Synchrony, stability, and firing patterns in pulse-coupled oscillators
    Goel, P
    Ermentrout, B
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 163 (3-4) : 191 - 216
  • [32] On Exponential Synchronization of Kuramoto Oscillators
    Chopra, Nikhil
    Spong, Mark W.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) : 353 - 357
  • [33] SYNCHRONIZATION ANALYSIS OF KURAMOTO OSCILLATORS
    Dong, Jiu-Gang
    Xue, Xiaoping
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (02) : 465 - 480
  • [34] Complete synchronization of Kuramoto oscillators
    Lunze, Jan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (42)
  • [35] On the Critical Coupling for Kuramoto Oscillators
    Doerfler, Florian
    Bullo, Francesco
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (03): : 1070 - 1099
  • [36] Hysteretic transitions in the Kuramoto model with inertia
    Olmi, Simona
    Navas, Adrian
    Boccaletti, Stefano
    Torcini, Alessandro
    PHYSICAL REVIEW E, 2014, 90 (04):
  • [37] Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia
    Arinushkin, P. A.
    Vadivasova, T. E.
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [38] Beyond global synchrony: Equivalence between Kuramoto oscillators and Wilson-Cowan model for large scale brain networks
    Abd-Elrazik, Ahmed H.
    Torres, Felipe A.
    Oteroc, Monica
    Lea-Carnall, Caroline A.
    El-Deredy, Wael
    18TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2023, 12567
  • [39] Synchrony for Weak Coupling in the Complexified Kuramoto Model
    Thuemler, Moritz
    Srinivas, Shesha G. M.
    Schroeder, Malte
    Timme, Marc
    PHYSICAL REVIEW LETTERS, 2023, 130 (18)
  • [40] Kuramoto model of weakly conformed oscillators
    Ly, Hung-Yi
    Kuo, Huan-Yu
    Wu, Kuo-An
    PHYSICAL REVIEW E, 2018, 98 (05)