Nuclear Data Uncertainty Propagation: Total Monte Carlo vs. Covariances

被引:31
|
作者
Rochman, D. [1 ]
Koning, A. J. [1 ]
van der Marck, S. C. [1 ]
Hogenbirk, A. [1 ]
van Veen, D. [1 ]
机构
[1] Nucl Res & Consultancy Grp NRG, Petten, Netherlands
关键词
Neutron reactions; Total Monte Carlo; Perturbation method; MCNP; Covariances; k(eff); ENDF/B-VII.0;
D O I
10.3938/jkps.59.1236
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two distinct methods of propagation for basic nuclear data uncertainties to large scale systems will be presented and compared. The "Total Monte Carlo" method is using a statistical ensemble of nuclear data libraries randomly generated by means of a Monte Carlo approach with the TALYS system. These libraries are then directly used in a large number of reactor calculations (for instance with MCNP) after which the exact probability distribution for the reactor parameter is obtained. The second method makes use of available covariance files and can be done in a single reactor calculation (by using the perturbation method). In this exercise, both methods are using consistent sets of data files, which implies that covariance files used in the second method are directly obtained from the randomly generated nuclear data libraries from the first method. This is a unique and straightforward comparison allowing to directly apprehend advantages and drawbacks of each method. Comparisons for different reactions and criticality-safety benchmarks from 1 F to actinides will be presented. We can thus conclude whether current methods for using covariance data are good enough or not.
引用
收藏
页码:1236 / 1241
页数:6
相关论文
共 50 条
  • [41] Assessment and propagation of the 237Np nuclear data uncertainties in integral calculations by Monte Carlo techniques
    Noguere, Gilles
    Bernard, David
    Saint Jean, Cyrille De
    Iooss, Bertrand
    Gunsing, Frank
    Kobayashi, Katsuhei
    Mughabghab, Said F.
    Siegler, Peter
    NUCLEAR SCIENCE AND ENGINEERING, 2008, 160 (01) : 108 - 122
  • [42] Iterative Bayesian Monte Carlo for nuclear data evaluation
    Erwin Alhassan
    Dimitri Rochman
    Alexander Vasiliev
    Mathieu Hursin
    Arjan J.Koning
    Hakim Ferroukhi
    Nuclear Science and Techniques, 2022, 33 (04) : 103 - 133
  • [43] Bayesian Monte Carlo method for nuclear data evaluation
    A. J. Koning
    The European Physical Journal A, 2015, 51
  • [44] Iterative Bayesian Monte Carlo for nuclear data evaluation
    Erwin Alhassan
    Dimitri Rochman
    Alexander Vasiliev
    Mathieu Hursin
    Arjan J. Koning
    Hakim Ferroukhi
    Nuclear Science and Techniques, 2022, 33
  • [45] Bayesian Monte Carlo method for nuclear data evaluation
    Koning, A. J.
    EUROPEAN PHYSICAL JOURNAL A, 2015, 51 (12): : 1 - 16
  • [46] Iterative Bayesian Monte Carlo for nuclear data evaluation
    Alhassan, Erwin
    Rochman, Dimitri
    Vasiliev, Alexander
    Hursin, Mathieu
    Koning, Arjan J.
    Ferroukhi, Hakim
    NUCLEAR SCIENCE AND TECHNIQUES, 2022, 33 (04)
  • [47] Bayesian Monte Carlo Method for Nuclear Data Evaluation
    Honing, A. J.
    NUCLEAR DATA SHEETS, 2015, 123 : 207 - 213
  • [48] Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data
    S. Actis
    A. Arbuzov
    G. Balossini
    P. Beltrame
    C. Bignamini
    R. Bonciani
    C. M. Carloni Calame
    V. Cherepanov
    M. Czakon
    H. Czyż
    A. Denig
    S. Eidelman
    G. V. Fedotovich
    A. Ferroglia
    J. Gluza
    A. Grzelińska
    M. Gunia
    A. Hafner
    F. Ignatov
    S. Jadach
    F. Jegerlehner
    A. Kalinowski
    W. Kluge
    A. Korchin
    J. H. Kühn
    E. A. Kuraev
    P. Lukin
    P. Mastrolia
    G. Montagna
    S. E. Müller
    F. Nguyen
    O. Nicrosini
    D. Nomura
    G. Pakhlova
    G. Pancheri
    M. Passera
    A. Penin
    F. Piccinini
    W. Płaczek
    T. Przedzinski
    E. Remiddi
    T. Riemann
    G. Rodrigo
    P. Roig
    O. Shekhovtsova
    C. P. Shen
    A. L. Sibidanov
    T. Teubner
    L. Trentadue
    G. Venanzoni
    The European Physical Journal C, 2010, 66 : 585 - 686
  • [49] Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data
    Actis, S.
    Arbuzov, A.
    Balossini, G.
    Beltrame, P.
    Bignamini, C.
    Bonciani, R.
    Calame, C. M. Carloni
    Cherepanov, V.
    Czakon, M.
    Czyz, H.
    Denig, A.
    Eidelman, S.
    Fedotovich, G. V.
    Ferroglia, A.
    Gluza, J.
    Grzelinska, A.
    Gunia, M.
    Hafner, A.
    Ignatov, F.
    Jadach, S.
    Jegerlehner, F.
    Kalinowski, A.
    Kluge, W.
    Korchin, A.
    Kuehn, J. H.
    Kuraev, E. A.
    Lukin, P.
    Mastrolia, P.
    Montagna, G.
    Mueller, S. E.
    Nguyen, F.
    Nicrosini, O.
    Nomura, D.
    Pakhlova, G.
    Pancheri, G.
    Passera, M.
    Penin, A.
    Piccinini, F.
    Placzek, W.
    Przedzinski, T.
    Remiddi, E.
    Riemann, T.
    Rodrigo, G.
    Roig, P.
    Shekhovtsova, O.
    Shen, C. P.
    Sibidanov, A. L.
    Teubner, T.
    Trentadue, L.
    Venanzoni, G.
    EUROPEAN PHYSICAL JOURNAL C, 2010, 66 (3-4): : 585 - 686
  • [50] Light propagation through weakly scattering media. A study of Monte Carlo vs. Diffusion Theory with application to Neuroimaging
    Ancora, Daniele
    Zacharopoulos, Athanasios
    Ripoll, Jorge
    Zacharakis, Giannis
    DIFFUSE OPTICAL IMAGING V, 2015, 9538