Nuclear Data Uncertainty Propagation: Total Monte Carlo vs. Covariances

被引:31
|
作者
Rochman, D. [1 ]
Koning, A. J. [1 ]
van der Marck, S. C. [1 ]
Hogenbirk, A. [1 ]
van Veen, D. [1 ]
机构
[1] Nucl Res & Consultancy Grp NRG, Petten, Netherlands
关键词
Neutron reactions; Total Monte Carlo; Perturbation method; MCNP; Covariances; k(eff); ENDF/B-VII.0;
D O I
10.3938/jkps.59.1236
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two distinct methods of propagation for basic nuclear data uncertainties to large scale systems will be presented and compared. The "Total Monte Carlo" method is using a statistical ensemble of nuclear data libraries randomly generated by means of a Monte Carlo approach with the TALYS system. These libraries are then directly used in a large number of reactor calculations (for instance with MCNP) after which the exact probability distribution for the reactor parameter is obtained. The second method makes use of available covariance files and can be done in a single reactor calculation (by using the perturbation method). In this exercise, both methods are using consistent sets of data files, which implies that covariance files used in the second method are directly obtained from the randomly generated nuclear data libraries from the first method. This is a unique and straightforward comparison allowing to directly apprehend advantages and drawbacks of each method. Comparisons for different reactions and criticality-safety benchmarks from 1 F to actinides will be presented. We can thus conclude whether current methods for using covariance data are good enough or not.
引用
收藏
页码:1236 / 1241
页数:6
相关论文
共 50 条
  • [1] Nuclear data uncertainty propagation: Perturbation vs. Monte Carlo
    Rochman, D.
    Koning, A. J.
    van der Marck, S. C.
    Hogenbirk, A.
    Sciolla, C. M.
    ANNALS OF NUCLEAR ENERGY, 2011, 38 (05) : 942 - 952
  • [2] Evaluating Embedded Monte Carlo vs. Total Monte Carlo for Nuclear Data Uncertainty Quantification
    Biot, Gregoire
    Rochman, Dimitri
    Ducru, Pablo
    Forget, Benoit
    JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, SNA + MC 2024, 2024, 302
  • [3] Combining Total Monte Carlo and Unified Monte Carlo: Bayesian nuclear data uncertainty quantification from auto-generated experimental covariances
    Helgesson, P.
    Sjostrand, H.
    Koning, A. J.
    Ryden, J.
    Rochman, D.
    Alhassan, E.
    Pomp, S.
    PROGRESS IN NUCLEAR ENERGY, 2017, 96 : 76 - 96
  • [4] Nuclear data uncertainty for criticality-safety: Monte Carlo vs. linear perturbation
    Rochman, D.
    Vasiliev, A.
    Ferroukhi, H.
    Zhu, T.
    van der Marck, S. C.
    Koning, A. J.
    ANNALS OF NUCLEAR ENERGY, 2016, 92 : 150 - 160
  • [5] Propagation of nuclear data uncertainty: Exact or with covariances
    Rochman, D.
    Koning, A. J.
    van der Marck, S. C.
    Hogenbirk, A.
    van Veen, D.
    EFNUDAT: MEASUREMENTS AND MODELS OF NUCLEAR REACTIONS, 2010, 8
  • [6] Examples of Monte Carlo techniques applied for nuclear data uncertainty propagation
    Cabellos, Oscar
    Fiorito, Luca
    5TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS (WONDER-2018), 2019, 211
  • [7] Nuclear data uncertainty propagation in continuous-energy Monte Carlo calculations
    Aures, Alexander
    Eisenstecken, Thomas
    Elts, Ekaterina
    Kilger, Robert
    ANNALS OF NUCLEAR ENERGY, 2025, 211
  • [8] Monte Carlo vs. Fuzzy Monte Carlo Simulation for Uncertainty and Global Sensitivity Analysis
    Kim, Young-Jin
    SUSTAINABILITY, 2017, 9 (04):
  • [9] Combining Total Monte Carlo and Benchmarks for Nuclear Data Uncertainty Propagation on a Lead Fast Reactor's Safety Parameters
    Alhassan, E.
    Sjostrand, H.
    Duan, J.
    Gustavsson, C.
    Koning, A. J.
    Pomp, S.
    Rochman, D.
    Osterlund, M.
    NUCLEAR DATA SHEETS, 2014, 118 : 542 - 544
  • [10] Monte Carlo integral adjustment of nuclear data libraries - experimental covariances and inconsistent data
    Sjostrand, Henrik
    Schnabel, Georg
    5TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS (WONDER-2018), 2019, 211