Dipolarizations in Kac-Moody Algebras

被引:0
|
作者
Wang, Yan [3 ]
Meng, Daoji [1 ,2 ]
机构
[1] Nankai Univ, Dept Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
dipolarization; Kac-Moody algebra; HOMOGENEOUS PARAKAHLER MANIFOLDS; LIE-ALGEBRAS;
D O I
10.1142/S1005386709000637
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some methods are given to construct dipolarizations in Kac-Moody algebras as well as their some subalgebras, and an illustrative example is provided. The dipolarizations found in this paper include symmetric and non-symmetric ones.
引用
收藏
页码:669 / 676
页数:8
相关论文
共 50 条
  • [31] Supercategorification of quantum Kac-Moody algebras
    Kang, Seok-Jin
    Kashiwara, Masaki
    Oh, Se-jin
    ADVANCES IN MATHEMATICS, 2013, 242 : 116 - 162
  • [32] AUTOMORPHISMS OF AFFINE KAC-MOODY ALGEBRAS
    BAUSCH, J
    TITS, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (11): : 409 - 412
  • [33] Characters of affine Kac-Moody algebras
    Hussin, A
    King, RC
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 162 - 166
  • [34] SOME FORMS OF KAC-MOODY ALGEBRAS
    ANDRUSKIEWITSCH, N
    JOURNAL OF ALGEBRA, 1992, 147 (02) : 324 - 344
  • [35] Varieties of affine Kac-Moody algebras
    M. V. Zaitsev
    Mathematical Notes, 1997, 62 : 80 - 86
  • [36] Triangulated categories and Kac-Moody algebras
    Liangang Peng
    Jie Xiao
    Inventiones mathematicae, 2000, 140 : 563 - 603
  • [37] Kac-Moody groups and cluster algebras
    Geiss, Christof
    Leclerc, Bernard
    Schroeer, Jan
    ADVANCES IN MATHEMATICS, 2011, 228 (01) : 329 - 433
  • [38] Deformed Kac-Moody algebras and their representations
    Liu, Jianbo
    Zhao, Kaiming
    JOURNAL OF ALGEBRA, 2008, 319 (11) : 4692 - 4711
  • [39] GROUPS ASSOCIATED WITH KAC-MOODY ALGEBRAS
    TITS, J
    ASTERISQUE, 1989, (177-78) : 7 - 31
  • [40] Quiver varieties and Kac-Moody algebras
    Nakajima, H
    DUKE MATHEMATICAL JOURNAL, 1998, 91 (03) : 515 - 560