A smoothed finite element method for mechanics problems

被引:781
|
作者
Liu, G. R.
Dai, K. Y.
Nguyen, T. T.
机构
[1] Natl Univ Singapore, Dept Mech Engn, Ctr Adv Computat Engn Sci, Singapore 119260, Singapore
[2] Singapore MIT Alliance, Singapore 117576, Singapore
关键词
finite element method (FEM); smoothed finite element method (SFEM); strain smoothing; isoparametric element; Gauss quadrature;
D O I
10.1007/s00466-006-0075-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the finite element method (FEM), a necessary condition for a four-node isoparametric element is that no interior angle is greater than 180 degrees and the positivity of Jacobian determinant should be ensured in numerical implementation. In this paper, we incorporate cell-wise strain smoothing operations into conventional finite elements and propose the smoothed finite element method (SFEM) for 2D elastic problems. It is found that a quadrilateral element divided into four smoothing cells can avoid spurious modes and gives stable results for integration over the element. Compared with original FEM, the SFEM achieves more accurate results and generally higher convergence rate in energy without increasing computational cost. More importantly, as no mapping or coordinate transformation is involved in the SFEM, its element is allowed to be of arbitrary shape. Hence the restriction on the shape bilinear isoparametric elements can be removed and problem domain can be discretized in more flexible ways, as demonstrated in the example problems.
引用
收藏
页码:859 / 877
页数:19
相关论文
共 50 条
  • [21] A stable node-based smoothed finite element method for acoustic problems
    Wang, G.
    Cui, X. Y.
    Feng, H.
    Li, G. Y.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 297 : 348 - 370
  • [22] Hybrid smoothed finite element method for two dimensional acoustic radiation problems
    Chai, Y. B.
    Li, W.
    Gong, Z. X.
    Li, T. Y.
    [J]. APPLIED ACOUSTICS, 2016, 103 : 90 - 101
  • [23] AN IMMERSED SMOOTHED FINITE ELEMENT METHOD FOR FLUID-STRUCTURE INTERACTION PROBLEMS
    Zhang, Zhi-Qian
    Yao, Jianyao
    Liu, G. R.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2011, 8 (04) : 747 - 757
  • [24] An edge-based smoothed finite element method softened with a bubble function (bES-FEM) for solid mechanics problems
    Nguyen-Xuan, H.
    Liu, G. R.
    [J]. COMPUTERS & STRUCTURES, 2013, 128 : 14 - 30
  • [25] A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems
    Liu, G. R.
    Nguyen-Thoi, T.
    Nguyen-Xuan, H.
    Lam, K. Y.
    [J]. COMPUTERS & STRUCTURES, 2009, 87 (1-2) : 14 - 26
  • [26] On the approximation in the smoothed finite element method (SFEM)
    Bordas, Stephane P. A.
    Natarajan, Sundararajan
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (05) : 660 - 670
  • [27] A smoothed finite element method for plate analysis
    Nguyen-Xuan, H.
    Rabczuk, T.
    Bordas, Stephane
    Debongnie, J. F.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (13-16) : 1184 - 1203
  • [28] A smoothed finite element method for shell analysis
    Nguyen-Thanh, N.
    Rabczuk, Timon
    Nguyen-Xuan, H.
    Bordas, Stephane P. A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 198 (02) : 165 - 177
  • [29] Linear smoothed extended finite element method
    Surendran, M.
    Natarajan, Sundararajan
    Bordas, Stephane P. A.
    Palani, G. S.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 112 (12) : 1733 - 1749
  • [30] A temporal stable smoothed particle finite element method for large deformation problems in geomechanics
    Yuan, Wei-Hai
    Liu, Ming
    Guo, Ning
    Dai, Bei-Bing
    Zhang, Wei
    Wang, Yuan
    [J]. COMPUTERS AND GEOTECHNICS, 2023, 156