Object recognition using local affine frames on maximally stable extremal regions

被引:0
|
作者
Obdrzalek, Stepan [1 ]
Matas, Jiri [1 ]
机构
[1] Czech Tech Univ, Ctr Machine Percept, CR-16635 Prague, Czech Republic
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Methods based on distinguished regions (transformation covariant detectable regions) have achieved considerable success in object recognition, retrieval and matching problems in both still images and videos. The chapter focuses on a method exploiting local coordinate systems (local affine frames) established on maximally stable extremal regions. We provide a taxonomy of affine-covariant constructions of local coordinate systems, prove their affine covariance and present algorithmic details on their computation. Exploiting processes proposed for computation of affine-invariant local frames of reference, tentative region-to-region correspondences are established. Object recognition is formulated as a problem of finding a maximal set of geometrically consistent matches. State of the art results are reported on standard, publicly available, object recognition tests (COIL-100, ZuBuD, FOCUS). Change of scale, illumination conditions, out-of-plane rotation, occlusion, locally anisotropic scale change and 3D translation of the viewpoint are all present in the test problems.
引用
收藏
页码:83 / +
页数:4
相关论文
共 50 条
  • [41] Detection of COVID-19: A Metaheuristic-Optimized Maximally Stable Extremal Regions Approach
    Garcia-Gutierrez, Victor
    Gonzalez, Adrian
    Cuevas, Erik
    Fausto, Fernando
    Perez-Cisneros, Marco
    SYMMETRY-BASEL, 2024, 16 (07):
  • [42] ROBUST TEXT DETECTION IN NATURAL IMAGES WITH EDGE-ENHANCED MAXIMALLY STABLE EXTREMAL REGIONS
    Chen, Huizhong
    Tsai, Sam S.
    Schroth, Georg
    Chen, David M.
    Grzeszczuk, Radek
    Girod, Bernd
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [43] A Maximally Stable Extremal Regions System-on-Chip For Real-Time Visual Surveillance
    Salahat, Ehab
    Saleh, Hani
    Sluzek, Andrzej
    Al-Qutayri, Mahmoud
    Mohammad, Baker
    Ismail, Mohammad
    IECON 2015 - 41ST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2015, : 2812 - 2815
  • [44] Local discriminant regions using Support Vector Machines for object recognition
    Guillamet, D
    Vitrià, J
    ADVANCES IN PATTERN RECOGNITION, 2000, 1876 : 550 - 559
  • [45] Efficient symmetry detection using local affine frames
    Cornelius, Hugo
    Perd'och, Michal
    Matas, Jiri
    Loy, Gareth
    IMAGE ANALYSIS, PROCEEDINGS, 2007, 4522 : 152 - +
  • [46] OIL SPILL CANDIDATE DETECTION FROM SAR IMAGERY USING THREASHOLDING-GUIDED MAXIMALLY STABLE EXTREMAL REGIONS ALGORITHM
    Zhang, Qian
    Huang, Yunlin
    Huo, Weibo
    Gu, Qin
    Pei, Jifang
    Yang, Jianyu
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5800 - 5803
  • [47] Text Localization Based on Fast Feature Pyramids and Multi-Resolution Maximally Stable Extremal Regions
    Zamberletti, Alessandro
    Noce, Lucia
    Gallo, Ignazio
    COMPUTER VISION - ACCV 2014 WORKSHOPS, PT II, 2015, 9009 : 91 - 105
  • [48] Detecting Scene Elements Using Maximally Stable Colour Regions
    Obdrzalek, David
    Basovnik, Stanislav
    Mach, Lukas
    Mikulik, Andrej
    RESEARCH AND EDUCATION IN ROBOTICS: EUROBOT 2009, 2010, 82 : 107 - 115
  • [49] Affine invariants for object recognition using the wavelet transform
    Khalil, MI
    Bayoumi, MA
    PATTERN RECOGNITION LETTERS, 2002, 23 (1-3) : 57 - 72
  • [50] A sparse texture representation using local affine regions
    Lazebnik, S
    Schmid, C
    Ponce, J
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (08) : 1265 - 1278