EGAD! An Evolved Grasping Analysis Dataset for Diversity and Reproducibility in Robotic Manipulation

被引:63
|
作者
Morrison, Douglas [1 ]
Corke, Peter [1 ]
Leitner, Jurgen [1 ,2 ]
机构
[1] Queensland Univ Technol QUT, Australian Ctr Robot Vis ACRV, Brisbane, Qld 4000, Australia
[2] LYRO Robot, Brisbane, Qld 4113, Australia
基金
澳大利亚研究理事会;
关键词
Grasping; performance evaluation and benchmarking; deep learning in grasping and manipulation; NETWORKS;
D O I
10.1109/LRA.2020.2992195
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We present the Evolved Grasping Analysis Dataset (EGAD), comprising over 2000 generated objects aimed at training and evaluating robotic visual grasp detection algorithms. The objects in EGAD are geometrically diverse, filling a space ranging from simple to complex shapes and from easy to difficult to grasp, compared to other datasets for robotic grasping, which may be limited in size or contain only a small number of object classes. Additionally, we specify a set of 49 diverse 3D-printable evaluation objects to encourage reproducible testing of robotic grasping systems across a range of complexity and difficulty. The dataset, code and videos can be found at https://dougsm.github.io/egad/
引用
收藏
页码:4368 / 4375
页数:8
相关论文
共 50 条
  • [21] OCRTOC: A Cloud-Based Competition and Benchmark for Robotic Grasping and Manipulation
    Liu, Ziyuan
    Liu, Wei
    Qin, Yuzhe
    Xiang, Fanbo
    Gou, Minghao
    Xin, Songyan
    Roa, Maximo A.
    Calli, Berk
    Su, Hao
    Sun, Yu
    Tan, Ping
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (01) : 486 - 493
  • [22] A Sensorized Soft Robotic Hand with Adhesive Fingertips for Multimode Grasping and Manipulation
    Park, Wookeun
    Park, Seongjin
    An, Hail
    Seong, Minho
    Bae, Joonbum
    Jeong, Hoon Eui
    SOFT ROBOTICS, 2024, 11 (04) : 698 - 708
  • [23] GraspMan A Novel Robotic Platform with Grasping, Manipulation, and Multimodal Locomotion Capability
    Govindan, Nagamanikandan
    Kovvali, Sai Sourya Varenya
    Chandrasekaran, Karthik
    Thondiyath, Asokan
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 7354 - 7359
  • [24] Activities of Daily Living Object Dataset: Advancing Assistive Robotic Manipulation with a Tailored Dataset
    Shahria, Md Tanzil
    Rahman, Mohammad H.
    SENSORS, 2024, 24 (23)
  • [25] Benchmarking Simulated Robotic Manipulation Through a Real World Dataset
    Collins, Jack
    McVicar, Jessie
    Wedlock, David
    Brown, Ross
    Howard, David
    Leitner, Jurgen
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (01) : 250 - 257
  • [26] Yale-CMU-Berkeley dataset for robotic manipulation research
    Calli, Berk
    Singh, Arjun
    Bruce, James
    Walsman, Aaron
    Konolige, Kurt
    Srinivasa, Siddhartha
    Abbeel, Pieter
    Dollar, Aaron M.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2017, 36 (03): : 261 - 268
  • [27] ARMBench: An Object-centric Benchmark Dataset for Robotic Manipulation
    Mitash, Chaitanya
    Wang, Fan
    Lu, Shiyang
    Terhuja, Vikedo
    Garaas, Tyler
    Polido, Felipe
    Nambi, Manikantan
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 9132 - 9139
  • [28] A Grasping-Centered Analysis for Cloth Manipulation
    Borras, Julia
    Alenya, Guillem
    Torras, Carme
    IEEE TRANSACTIONS ON ROBOTICS, 2020, 36 (03) : 924 - 936
  • [29] Compliance in parallel to actuators for improving stability of robotic hands during grasping and manipulation
    Niehues, Taylor D.
    Rao, Prashant
    Deshpande, Ashish D.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (03): : 256 - 269
  • [30] Teaching Robotic and Biomechatronic Concepts with a Gripper Design Project and a Grasping and Manipulation Competition
    Liarokapis, Minas
    Kontoudis, George P.
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 2576 - 2582