GNSS-R DELAY/DOPPLER MAP COMPRESSION METHOD USING A DENOISING CONVOLUTIONAL AUTOENCODER

被引:0
|
作者
Du, Hao [1 ]
Min, Rong [2 ]
Guo, Wenfei [1 ]
机构
[1] Wuhan Univ, GNSS Res Ctr, Wuhan, Peoples R China
[2] Wuhan Univ, Sch Geodesy & Geomat, Wuhan, Peoples R China
关键词
DDM compression; feature extraction; denoising convolutional autoencoder (DCAE); CYGNSS; wind speed retrieval;
D O I
10.1109/GNSSR53802.2021.9617706
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To reduce the channel transmission and data storage in the spaceborne Global Navigation Satellite System Reflectometry (GNSS-R), a Delay/Doppler Map (DDM) compression method for CYGNSS products is proposed in this paper. It applies a self-supervised denoising convolutional autoencoder (DCAE) to dig out effective features in the DDM, which are used to reconstruct the DDM. This network is an encoder-decoder symmetric structure, which can reduce about 90% of the data volume. CYGNSS L0, L1a, and L1b DDMs are all used to validate the compressing performance in this paper. Results show that the averaged root mean square errors (RMSEs) between reconstructed and original L0, L1a, and L1b DDMs are 2816 counts, 2.8 * 10(-18) W and 5.7 * 10(10) m(2) respectively. The averaged peak signal-to-noise ratios (PSNRs) are respectively 19.48 dB, 13.67 dB, and 6.79 dB. The encoder-decoder structure of DCAE can effectively compress and restore DDMs. We also verify the effectiveness of features from the encoder by a simple fully connected network (FCN) for wind speed retrieval. The RMSE of wind speed retrievals is 1.76 m/s, which proves that compressed features carry roughness information.
引用
收藏
页码:53 / 56
页数:4
相关论文
共 50 条
  • [41] MIMO Speech Compression and Enhancement Based on Convolutional Denoising Autoencoder
    Li, You-Jin
    Wang, Syu-Siang
    Tsao, Yu
    Su, Borching
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 1245 - 1250
  • [42] Developing and Testing Models for Sea Surface Wind Speed Estimation with GNSS-R Delay Doppler Maps and Delay Waveforms
    Bu, Jinwei
    Yu, Kegen
    Zhu, Yongchao
    Qian, Nijia
    Chang, Jun
    REMOTE SENSING, 2020, 12 (22) : 1 - 24
  • [43] PAU/GNSS-R: Implementation, performance and first results of a real-time Delay-Doppler Map reflectometer using global navigation satellite system signals
    Marchan-Hernandez, Juan Fernando
    Camps, Adriano
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Ramos-Perez, Isaac
    Valencia, Enric
    SENSORS, 2008, 8 (05): : 3005 - U1
  • [44] Modeling and Analysis of Delay Doppler Maps for Spaceborne GNSS-R Signal Scattered from Sea Surface
    Chen, Min
    Yang, Peng-Ju
    Wu, Rui
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2024, 130 : 139 - 153
  • [45] GNSS-R DELAY-DOPPLER MAPS OVER LAND: PRELIMINARY RESULTS OF THE GRAJO FIELD EXPERIMENT
    Valencia, E.
    Camps, A.
    Vall-llossera, M.
    Monerris, A.
    Bosch-Lluis, X.
    Rodriguez-Alvarez, N.
    Ramos-Perez, I.
    Marchan-Hernandez, J. F.
    Martinez-Fernandez, J.
    Sanchez-Martin, N.
    Perez-Gutierrez, C.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3805 - 3808
  • [46] Modeling and Analysis of Delay Doppler Maps for Spaceborne GNSS-R Signal Scattered from Sea Surface
    Chen, Min
    Yang, Peng-Ju
    Wu, Rui
    Progress in Electromagnetics Research M, 2024, 130 : 139 - 153
  • [47] Sequential Processing of GNSS-R Delay-Doppler Maps to Estimate the Ocean Surface Wind Field
    Huang, Feixiong
    Garrison, James L.
    Rodriguez-Alvarez, Nereida
    O'Brien, Andrew J.
    Schoenfeldt, Kaitie M.
    Ho, Soon Chye
    Zhang, Han
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (12): : 10202 - 10217
  • [48] GNSS-R Altimeter Based on Doppler Multi-looking
    D'Addio, Salvatore
    Martin-Neira, Manuel
    di Bisceglie, Maurizio
    Galdi, Carmela
    Martin Alemany, Francisco
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (05) : 1452 - 1460
  • [49] Sea Surface Oil Slick Detection from GNSS-R Delay-Doppler Maps Using the Spatial Integration Approach
    Li, Chen
    Huang, Weimin
    2013 IEEE RADAR CONFERENCE (RADAR), 2013,
  • [50] Sea Ice Sensing From GNSS-R Data Using Convolutional Neural Networks
    Yan, Qingyun
    Huang, Weimin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (10) : 1510 - 1514