Quasi-optimal arithmetic for quaternion polynomials

被引:0
|
作者
Ziegler, M [1 ]
机构
[1] Univ Gesamthsch Paderborn, D-33095 Paderborn, Germany
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Fast algorithms for arithmetic on real or complex polynomials are well-known and have proven to be not only asymptotically efficient but also very practical. Based on Fast Fourier Transform, they for instance multiply two polynomials of degree up to n or multi-evaluate one at n points simultaneously within quasi-linear time O(n (.) polylog n). An extension to (and in fact the mere definition of) polynomials over fields R and C to the skew-field H of quaternions is promising but still missing. The present work proposes three approaches which in the commutative case coincide but for H turn out to differ, each one satisfying some desirable properties while lacking others. For each notion, we devise algorithms for according arithmetic; these are quasi-optimal in that their running times match lower complexity bounds up to polylogarithmic factors.
引用
收藏
页码:705 / 715
页数:11
相关论文
共 50 条
  • [11] Algorithmic synthesis of quasi-optimal filter
    Dambrauskas, A
    Rinkevicius, V
    Karaliünas, B
    [J]. EMD' 2004: XIV INTERNATIONAL CONFERENCE ON ELECTROMAGNETIC DISTURBANCES, PROCEEDINGS, 2004, : 201 - 202
  • [12] QUASI-OPTIMAL RECEPTION OF NOISE SIGNALS
    MAZOR, YL
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1982, 25 (04): : 36 - 43
  • [13] QUASI-OPTIMAL FILTERING OF RANDOM FUNCTIONS
    SOKOLOVSKIY, VZ
    [J]. ENGINEERING CYBERNETICS, 1977, 15 (01): : 135 - 138
  • [14] QUASI-OPTIMAL PRICE OF UNDEPLETABLE EXTERNALITIES
    HAMLEN, WA
    [J]. BELL JOURNAL OF ECONOMICS, 1977, 8 (01): : 324 - 334
  • [15] Quasi-Optimal Partial Order Reduction
    Nguyen, Huyen T. T.
    Rodriguez, Cesar
    Sousa, Marcelo
    Coti, Camille
    Petrucci, Laure
    [J]. COMPUTER AIDED VERIFICATION, CAV 2018, PT II, 2018, 10982 : 354 - 371
  • [16] Quasi-optimal partial order reduction
    Camille Coti
    Laure Petrucci
    César Rodríguez
    Marcelo Sousa
    [J]. Formal Methods in System Design, 2021, 57 : 3 - 33
  • [17] On constructing quasi-optimal robust systems
    M. G. Zotov
    [J]. Journal of Computer and Systems Sciences International, 2013, 52 : 677 - 685
  • [18] Algorithm quasi-optimal (AQ) learning
    Cervone, Guido
    Franzese, Pasquale
    Keesee, Allen P. K.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (02) : 218 - 236
  • [19] Adaptive Security with Quasi-Optimal Rate
    Hemenway, Brett
    Ostrovsky, Rafail
    Richelson, Silas
    Rosen, Alon
    [J]. THEORY OF CRYPTOGRAPHY, TCC 2016-A, PT I, 2016, 9562 : 525 - 541
  • [20] COMPUTING A SPLINE WITH QUASI-OPTIMAL NODES
    DELAYE, A
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1989, 30 (3-4) : 249 - 255