Weight potentials of the Riesz. Singular problems

被引:0
|
作者
Kipriyanov, IA [1 ]
机构
[1] Voronezh State Univ, Voronezh 394693, Russia
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:738 / 740
页数:3
相关论文
共 50 条
  • [1] On the maximal singular integral with Riesz potentials
    Lin, Qingze
    Xie, Huayou
    [J]. ARCHIV DER MATHEMATIK, 2023, 120 (06) : 631 - 642
  • [2] On the maximal singular integral with Riesz potentials
    Qingze Lin
    Huayou Xie
    [J]. Archiv der Mathematik, 2023, 120 : 631 - 642
  • [3] WEIGHT SPACES OF RIESZ TYPE POTENTIALS
    NOGIN, VA
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1982, (06): : 77 - 79
  • [4] Minimal energy problems for strongly singular Riesz kernels
    Harbrecht, Helmut
    Wendland, Wolfgang L.
    Zorii, Natalia
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (01) : 55 - 85
  • [5] ONE AND TWO WEIGHT NORM INEQUALITIES FOR RIESZ POTENTIALS
    Cruz-Uribe, David
    Moen, Kabe
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (01) : 295 - 323
  • [6] NONLINEAR BIHARMONIC PROBLEMS WITH SINGULAR POTENTIALS
    Carriao, P. . C. .
    Demarque, R.
    Miyagaki, O. H.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) : 2141 - 2154
  • [7] Bari-Markus property for Riesz projections of Hill operators with singular potentials
    Djakov, Plamen
    Mityagin, Boris
    [J]. FUNCTIONAL ANALYSIS AND COMPLEX ANALYSIS, 2009, 481 : 59 - +
  • [8] A note on nonlinear elliptic problems with singular potentials
    Badiale, Marino
    Rolando, Sergio
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2006, 17 (01) : 1 - 13
  • [9] A note on nonlinear elliptic problems with singular potentials
    Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
    [J]. Att Aca Naz Lincei Cl Sci Fis Mat Nat Rend Lincei Mat Appl, 2006, 1 (1-13):
  • [10] Bifurcation for nonlinear elliptic problems with singular potentials
    Wang, Weibing
    Huang, Mingzhu
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 117