Exact solution to an approximate sine-Gordon equation in (n+1)-dimensional space

被引:33
|
作者
Feng, ZS [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
solitary wave; sine-Gordon equation; equilibrium point; first integral; orbit; exact solution;
D O I
10.1016/S0375-9601(02)01114-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, using the qualitative theory of ordinary differential equations, we give a qualitative analysis to a two-dimensional plane autonomous system which is equivalent to an approximate sine-Gordon equation. Then using the first integral method, exact solutions to the approximate sine-Gordon equation in (n + 1)-dimensional space are expressed explicitly. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:64 / 76
页数:13
相关论文
共 50 条
  • [41] SINE-GORDON EQUATION
    HEYERHOFF, M
    [J]. MATHEMATICAL INTELLIGENCER, 1995, 17 (03): : 4 - &
  • [42] SINE-GORDON EQUATION
    RUBINSTE.J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (01) : 258 - +
  • [43] CONSTRUCTION OF EXACT SOLUTION TO SINE-GORDON EQUATION ON THE BASE OF ITS CHARACTERISTIC LIE RING
    Zhiber, A. V.
    Kamaeva, S. N.
    [J]. UFA MATHEMATICAL JOURNAL, 2016, 8 (03): : 49 - 57
  • [44] Approximate analytical solution of the coupled sine-Gordon equation using the variational iteration method
    Batiha, B.
    Noorani, M. S. M.
    Hashim, I.
    [J]. PHYSICA SCRIPTA, 2007, 76 (05) : 445 - 448
  • [45] n+1维双sine-Gordon模型的Coleman相变
    王振里
    楼森岳
    [J]. 物理学报, 1990, (07) : 1024 - 1030
  • [46] The solution of the two-dimensional sine-Gordon equation using the method of lines
    Bratsos, A. G.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) : 251 - 277
  • [47] APPROXIMATE TREATMENT OF 2 SOLITON SOLUTIONS OF THE SINE-GORDON EQUATION
    MIHALY, L
    [J]. SOLID STATE COMMUNICATIONS, 1979, 31 (06) : 409 - 411
  • [48] Exact Jacobian Elliptic Function Solutions to sine-Gordon Equation
    FU Zun--Tao
    YAO Zhen--Hua
    LIU Shi--Kuo
    LIU Shi--Da School of Physics & Laboratory for Severe Storm and Flood Disaster
    [J]. Communications in Theoretical Physics, 2005, 44 (07) : 23 - 30
  • [49] Exact solitons of the coupled sine-Gordon equation in nonlinear system
    Ekici, M.
    Zhou, Qin
    Sonmezoglu, A.
    Mirzazadeh, M.
    [J]. OPTIK, 2017, 136 : 435 - 444
  • [50] EXACT AND NUMERICAL-SOLUTIONS TO THE PERTURBED SINE-GORDON EQUATION
    LEVRING, OA
    SAMUELSEN, MR
    OLSEN, OH
    [J]. PHYSICA D, 1984, 11 (03): : 349 - 358