Error estimate of Gauge-Uzawa methods for incompressible flows with variable density

被引:14
|
作者
Chen, Hongtao [1 ,2 ]
Mao, Jingjing [1 ,2 ]
Shen, Jie [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[3] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
基金
中国国家自然科学基金;
关键词
Gauge-Uzawa method; Variable density; Error estimates; Finite element method; Stability; MIXED FINITE-ELEMENTS;
D O I
10.1016/j.cam.2019.06.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a positivity-preserving Gauge-Uzawa method for the semi-discrete-in-time scheme of incompressible viscous flows with variable density, and establish its stability and error estimates. We also construct and implement a fully discrete scheme with finite elements in space and derive its positivity-preserving and stability result. (C) 2019 Elsevier B.V. All rights reserved.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [21] The error analysis for the Cahn-Hilliard phase field model of two-phase incompressible flows with variable density
    Liao, Mingliang
    Wang, Danxia
    Zhang, Chenhui
    Jia, Hongen
    AIMS MATHEMATICS, 2023, 8 (12): : 31158 - 31185
  • [22] ERROR ANALYSIS OF PROPER ORTHOGONAL DECOMPOSITION STABILIZED METHODS FOR INCOMPRESSIBLE FLOWS
    Novo, Julia
    Rubino, Samuele
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (01) : 334 - 369
  • [23] TWO-PHASE INCOMPRESSIBLE FLOWS WITH VARIABLE DENSITY: AN ENERGETIC VARIATIONAL APPROACH
    Jiang, Jie
    Li, Yinghua
    Liu, Chun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3243 - 3284
  • [24] A new fractional time-stepping method for variable density incompressible flows
    Li, Ying
    Mei, Liquan
    Ge, Jiatai
    Shi, Feng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 : 124 - 137
  • [25] Approximation of variable density incompressible flows by means of finite elements and finite volumes
    Fraigneau, Y
    Guermond, JL
    Quartapelle, L
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2001, 17 (12): : 893 - 902
  • [26] A splitting method for incompressible flows with variable density based on a pressure Poisson equation
    Guermond, J. -L.
    Salgado, Abner
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (08) : 2834 - 2846
  • [27] Density-based smoothed particle hydrodynamics methods for incompressible flows
    Fatehi, R.
    Rahmat, A.
    Tofighi, N.
    Yildiz, M.
    Shadloo, M. S.
    COMPUTERS & FLUIDS, 2019, 185 : 22 - 33
  • [28] Error analysis of fully discrete velocity-correction methods for incompressible flows
    Guermond, J. L.
    Shen, Jie
    Yang, Xiaofeng
    MATHEMATICS OF COMPUTATION, 2008, 77 (263) : 1387 - 1405
  • [29] Stability and temporal error estimate of scalar auxiliary variable schemes for the magnetohydrodynamics equations with variable density
    Chen, Hang
    He, Yuyu
    Chen, Hongtao
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (01)
  • [30] A fractional step method based on a pressure Poisson equation for incompressible flows with variable density
    Guermond, Jean-Luc
    Salgado, Abner
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (15-16) : 913 - 918