ON THE AMENABILITY OF A CLASS OF BANACH ALGEBRAS WITH APPLICATION TO MEASURE ALGEBRA

被引:0
|
作者
Ghanei, Mohammad Reza [1 ,2 ]
Nemati, Mehdi [3 ]
机构
[1] Univ Khansar, Dept Math, Khansar, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[3] Isfahan Uinvers Technol, Dept Math Sci, Esfahan 8415683111, Iran
关键词
inner amenability; Lau algebra; left amenability; mixed identity; measure algebra; strict inner amenability;
D O I
10.1515/ms-2017-0299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a Lau algebra and X be a topologically invariant subspace of L* containing UC(L). We prove that if L has a bounded approximate identity, then strict inner amenability of is equivalent to the existence of a strictly inner invariant mean on X. We also show that when L is inner amenable the cardinality of the set of topologically left invariant means on L* is equal to the cardinality of the set of topologically left invariant means on RUC(L). Applying this result, we prove that if L is inner amenable and < L-2 > = L, then the essential left amenability of L is equivalent to the left amenability of L. Finally, for a locally compact group G, we consider the measure algebra M(G) to study strict inner amenability of M(G) and its relation with inner amenability of G. (C) 2019 Mathematical Institute Slovak Academy of Sciences
引用
下载
收藏
页码:1177 / 1184
页数:8
相关论文
共 50 条
  • [21] Amenability and essential amenability of certain banach algebras
    Bami, Mahmoud Lashkarizadeh
    Samea, Hojatollah
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2007, 44 (03) : 377 - 390
  • [22] Character amenability of Banach algebras
    Monfared, Mehdi Sangani
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 144 : 697 - 706
  • [23] Amenability for dual Banach algebras
    Runde, V
    STUDIA MATHEMATICA, 2001, 148 (01) : 47 - 66
  • [24] Relative Amenability of Banach Algebras
    Khodakarami, Wania
    Ghahramani, Hoger
    Feizi, Esmaeil
    FILOMAT, 2022, 36 (06) : 2091 - 2103
  • [25] ON Δ-WEAK φ-AMENABILITY OF BANACH ALGEBRAS
    Laali, Javad
    Fozouni, Mohammad
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (04): : 165 - 176
  • [26] σ-symmetric amenability of Banach algebras
    Chen, Lin
    Mehdipour, Mohammad Javad
    Li, Jun
    GEORGIAN MATHEMATICAL JOURNAL, 2024,
  • [27] On Ideal Amenability of Banach Algebras
    Jabbari, A.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2012, 8 (02) : 135 - 143
  • [28] On δ-weak φ-amenability of banach algebras
    Laali, Javad
    Fozouni, Mohammad
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2015, 77 (04): : 165 - 176
  • [29] ON IDEAL AMENABILITY IN BANACH ALGEBRAS
    Mewomo, O. T.
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (02): : 273 - 278
  • [30] σ-JORDAN AMENABILITY OF BANACH ALGEBRAS
    Li, Jun
    Chen, Lin
    Mehdipour, Mohammad javad
    HONAM MATHEMATICAL JOURNAL, 2024, 46 (01): : 1 - 11