Let pi be a SL(3, Z) Hecke-Maass cusp form, f be a SL(2, Z) holomorphic cusp form or Maass cusp form and chi be any non-trivial character modp, where pis prime. We show that the L-functionassociated with this triplet satisfy L(1/2, pi x f x chi) <<(pi,f,is an element of) p(3/2-1/16+is an element of) The method also yields the subconvex bound L(1/2, pi circle times chi) <<(pi,is an element of) p(3/4-1/32 +is an element of) (c) 2022 Elsevier Inc. All rights reserved.