Bertalanffy;
fish growth;
information theory;
model selection uncertainty;
multi-model inference;
D O I:
10.1111/j.1467-2979.2008.00279.x
中图分类号:
S9 [水产、渔业];
学科分类号:
0908 ;
摘要:
The common practice among researchers who study fish growth is to a priori adopt the von Bertalanffy growth model (VBGM), which is the most used and ubiquitous equation in the fisheries literature. However, in many cases VBGM is not supported by the data and many species seem to follow different growth trajectories. The information theory approach frees the researcher from the limiting concept that a 'true' growth model exists. Multi-model inference (MMI) based on information theory is proposed as a more robust alternative to study fish growth. The proposed methodology was applied to 133 sets of length-at-age data. Four candidate models were fitted to each data set: von Bertalanffy growth model (VBGM), Gompertz model, Logistic and the Power model; the three former assume asymptotic and the latter non-asymptotic growth. In each case, the 'best' model was selected by minimizing the small-sample, bias-corrected form of the Akaike information criterion (AIC(c)). To quantify the plausibility of each model, the 'Akaike weight' w(i) of each model was calculated. Following a MMI approach, the model averaged asymptotic length (L) over bar (infinity) for each case was estimated, by model averaging estimations of L-infinity interpreting Akaike weights as a posterior probability distribution over the set of candidate models. The VBGM was not selected as the best model in 65.4% of the cases. Most often VBGM was either strongly supported by the data (with no other substantially supported model) or had very low or no support by the data. The estimation of asymptotic length was greatly model dependent; L-infinity as estimated by VBGM was in every case greater than that estimated by the Gompertz model, which in turn was always greater than that estimated by the Logistic model. The percentage underestimation of the standard error of L-infinity, when ignoring model selection uncertainty, was on average 18% with values as high as 91%. Ignoring model selection uncertainty may have serious implications, e.g. when comparing the growth parameters of different fish populations. Multi-model inference by model averaging, based on Akaike weights, is recommended as a simple and easy to implement method to model fish growth, for making robust parameter estimations and dealing with model selection uncertainty.
机构:
Natl Univ La Plata, Fac Ciencias Nat & Museo, Div Zool Invertebrados La Plata, RA-1900 Buenos Aires, DF, ArgentinaNatl Univ La Plata, Fac Ciencias Nat & Museo, Div Zool Invertebrados La Plata, RA-1900 Buenos Aires, DF, Argentina
Rumi, Alejandra
Gutierrez Gregoric, Diego E.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ La Plata, Fac Ciencias Nat & Museo, Div Zool Invertebrados La Plata, RA-1900 Buenos Aires, DF, ArgentinaNatl Univ La Plata, Fac Ciencias Nat & Museo, Div Zool Invertebrados La Plata, RA-1900 Buenos Aires, DF, Argentina
Gutierrez Gregoric, Diego E.
Roche, M. Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ La Plata, Fac Ciencias Nat & Museo, Div Zool Invertebrados La Plata, RA-1900 Buenos Aires, DF, ArgentinaNatl Univ La Plata, Fac Ciencias Nat & Museo, Div Zool Invertebrados La Plata, RA-1900 Buenos Aires, DF, Argentina
机构:
Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh CityFaculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City
Nguyen V.H.
Duy Pham T.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Science and Technology of Industry 4.0, Nguyen Tat Thanh University, Ho Chi Minh City
ALHOSN University, Abu DhabiFaculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City
Duy Pham T.
Duong T.H.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Science and Technology of Industry 4.0, Nguyen Tat Thanh University, Ho Chi Minh City
ALHOSN University, Abu DhabiFaculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City
机构:
Ric Applicate AllEcol & Biol Marina, Aplysia, Via Menichetti 35, I-57128 Livorno, ItalyUniv Cagliari, Dipartimento Sci Vita & Ambiente, Via T Fiorelli 1, I-09126 Cagliari, Italy
Massaro, Andrea
Zupa, Walter
论文数: 0引用数: 0
h-index: 0
机构:
COISPA Tecnol & Ric, Via Trulli 18-20, I-70126 Bari, ItalyUniv Cagliari, Dipartimento Sci Vita & Ambiente, Via T Fiorelli 1, I-09126 Cagliari, Italy
Zupa, Walter
Donnaloia, Marilena
论文数: 0引用数: 0
h-index: 0
机构:
COISPA Tecnol & Ric, Via Trulli 18-20, I-70126 Bari, ItalyUniv Cagliari, Dipartimento Sci Vita & Ambiente, Via T Fiorelli 1, I-09126 Cagliari, Italy
Donnaloia, Marilena
论文数: 引用数:
h-index:
机构:
Follesa, Maria Cristina
Ligas, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
CIBM Consorzio Ctr Interuniv Biol Marina Ecol App, Vle N Sauro 4, I-57128 Livorno, ItalyUniv Cagliari, Dipartimento Sci Vita & Ambiente, Via T Fiorelli 1, I-09126 Cagliari, Italy
Ligas, Alessandro
论文数: 引用数:
h-index:
机构:
Mulas, Antonello
Palmisan o, Michele
论文数: 0引用数: 0
h-index: 0
机构:
COISPA Tecnol & Ric, Via Trulli 18-20, I-70126 Bari, ItalyUniv Cagliari, Dipartimento Sci Vita & Ambiente, Via T Fiorelli 1, I-09126 Cagliari, Italy
Palmisan o, Michele
Carbonara, Pierluigi
论文数: 0引用数: 0
h-index: 0
机构:
COISPA Tecnol & Ric, Via Trulli 18-20, I-70126 Bari, ItalyUniv Cagliari, Dipartimento Sci Vita & Ambiente, Via T Fiorelli 1, I-09126 Cagliari, Italy
机构:
Univ Autonoma Nayarit, Posgrad Ciencias Biol Agr, Carretera Tepic Compostela Km 9 Xalisco, Nayarit 63780, Mexico
Univ Autonoma Sinaloa, Fac Ciencias Mar, Lab Manejo Zona Costera, Mazatlan 82000, Sinaloa, MexicoUniv Autonoma Nayarit, Posgrad Ciencias Biol Agr, Carretera Tepic Compostela Km 9 Xalisco, Nayarit 63780, Mexico
Rodriguez-Dominguez, Guillermo
Castillo-Vargasmachuca, Sergio G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Nayarit, Posgrad Ciencias Biol Agr, Carretera Tepic Compostela Km 9 Xalisco, Nayarit 63780, MexicoUniv Autonoma Nayarit, Posgrad Ciencias Biol Agr, Carretera Tepic Compostela Km 9 Xalisco, Nayarit 63780, Mexico
Castillo-Vargasmachuca, Sergio G.
Perez-Gonzalez, Raul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Sinaloa, Fac Ciencias Mar, Lab Manejo Zona Costera, Mazatlan 82000, Sinaloa, MexicoUniv Autonoma Nayarit, Posgrad Ciencias Biol Agr, Carretera Tepic Compostela Km 9 Xalisco, Nayarit 63780, Mexico