Prediction of a flexible anode material for Li/Na ion batteries: Phosphorous carbide monolayer (α-PC)

被引:79
|
作者
Qi, Siyun [1 ,2 ]
Li, Feng [1 ,2 ,3 ]
Wang, Junru [1 ,2 ]
Qu, Yuanyuan [1 ,2 ]
Yang, Yanmei [4 ]
Li, Weifeng [1 ,2 ]
Zhao, Mingwen [1 ,2 ]
机构
[1] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
[3] Univ Jinan, Sch Phys & Technol, Jinan 250022, Shandong, Peoples R China
[4] Shandong Normal Univ, Coll Chem Chem Engn & Mat Sci, Collaborat Innovat Ctr Functionalized Probes Chem, Key Lab Mol & Nano Probes,Minist Educ,Inst Mol &, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
LI-ION; BLACK PHOSPHORUS; HIGH-MOBILITY; SODIUM-ION; AB-INITIO; LITHIUM; DIFFUSION; CAPACITY; PERFORMANCE; GRAPHENE;
D O I
10.1016/j.carbon.2018.09.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High performance anode materials are crucial for the design and fabrication of alkali ion batteries. Here, using first-principles calculations, we demonstrate that the recently-synthesized phosphorous carbide monolayer (alpha-PC) is identified as an ideal flexible anode material for Li/Na ion batteries. Compared with other well documented anodes including graphene and phosphorene, alpha-PC has the advantages of strong adsorption affinity and fast diffusion channels for Li and Na ions. The theoretical storage capacity reaches 623.2 mAh g(-1) for Li and 467.4 mAh g(-1) for Na with a suitable open circuit voltage range. More importantly, alpha-PC is rather flexible along the direction crossing the grooves with elastic constant of only 13.1 GPa nm. Benefitted from the puckered structure, alpha-PC demonstrates a stable structure and suitable binding/diffusion energetics to Li/Na ions under a wide range of strain up to 21%. These unique features make alpha-PC an ideal anode material for the design and fabrication of future flexible batteries. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:444 / 450
页数:7
相关论文
共 50 条
  • [31] Theoretical prediction on net boroxene as a promising Li/Na-ion batteries anode
    Huang, Chunlai
    Hu, Junping
    Ouyang, Chuying
    RSC ADVANCES, 2023, 13 (24) : 16758 - 16764
  • [32] Effects of Si, B doping on PC3 monolayer as anode for Na-ion batteries
    Liu, Lu
    Guan, Xiaopeng
    Zhong, Xiangli
    Wang, Jinbin
    Zou, Daifeng
    Cheng, Juanjuan
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2023, 152
  • [33] A DFT study of monolayer magnesium carbide (MgC2) as a potential anode for (Li, Na, K) alkali metal-ion batteries
    Akbar, Muhammad
    Ain, Noor ul
    Khan, Muhammad Isa
    Alotaibi, Rajeh
    Ali, Syed Mansoor
    Ashraf, Naveed
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (13) : 6570 - 6582
  • [34] First-Principles Study of Monolayer penta-CoS2 as a Promising Anode Material for Li/Na-ion Batteries
    Debbichi, M.
    Mallah, A.
    Dhaou, M. Houcine
    Lebegue, S.
    PHYSICAL REVIEW APPLIED, 2021, 16 (02):
  • [35] Nb2N monolayer as a promising anode material for Li/Na/K/Ca-ion batteries: a DFT calculation
    Wang, Yanwei
    Tian, Wu
    Zhang, Huijuan
    Wang, Yu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (21) : 12288 - 12295
  • [36] Silicon as anode material for Li-ion batteries
    Ozanam, Francois
    Rosso, Michel
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 213 : 2 - 11
  • [37] What is the promising anode material for Na ion batteries?
    Yangyang Zhou
    Yali Yang
    Menggai Jiao
    Zhen Zhou
    ScienceBulletin, 2018, 63 (03) : 146 - 148
  • [38] What is the promising anode material for Na ion batteries?
    Zhou, Yangyang
    Yang, Yali
    Jiao, Menggai
    Zhou, Zhen
    SCIENCE BULLETIN, 2018, 63 (03) : 146 - 148
  • [39] Aluminene as a Low-Cost Anode Material for Li- and Na-Ion Batteries
    Yadav, Kiran
    Ray, Nirat
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (31) : 37337 - 37343
  • [40] Black phosphorene/NP heterostructure as a novel anode material for Li/Na-ion batteries
    Wang, Yanwei
    Tian, Wu
    Zhang, Huijuan
    Wang, Yu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (33) : 19697 - 19704