Reduced-Rank Adaptive Multiuser Detection in Hybrid Direct-Sequence Time-Hopping Ultrawide Bandwidth Systems

被引:20
|
作者
Ahmed, Qasim Zeeshan [1 ]
Yang, Lie-Liang [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
Ultrawide bandwidth; hybrid direct-sequence time-hopping; adaptive detection; reduced-rank detection; recursive least square;
D O I
10.1109/TWC.2010.01.081172
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper a range of reduced-rank adaptive multiuser detectors (MUDs) are proposed and investigated for the hybrid direct-sequence time-hopping ultrawide bandwidth (DS-TH UWB) systems. The adaptive MUDs are operated based on the recursive least square (RLS) principles. Three types of reduced-rank techniques are investigated, which are the principal component (PC), cross-spectral metric (CSM) and Taylor polynomial approximation (TPA). These reduced-rank adaptive techniques are beneficial to achieving low-complexity, high spectral-efficiency and robust detection in hybrid DS-TH UWB systems. In this contribution bit error rate (BER) performance of the hybrid DS-TH UWB systems using proposed reduced-rank adaptive MUDs is investigated by simulations, when communicating over UWB channels modelled by the Saleh-Valenzuela (S-V) channel model. Our simulation results show that, given a sufficiently high rank of the detection subspace, the reduced-rank adaptive MUDs are capable of achieving a similar BER performance as that of the full-rank ideal minimum mean-square error MUD (MMSE-MUD) but with significantly lower detection complexity. Furthermore, the TPA-based reduced-rank adaptive MUD is capable of yielding a better BER performance than the PC-or CSM-based reduced-rank adaptive MUD, when the same but relatively low rank detection subspace is assumed.
引用
收藏
页码:156 / 167
页数:12
相关论文
共 38 条