Thermal conductivity of core-shell nanostructures: From nanowires to nanocomposites

被引:2
|
作者
Yang, Ronggui [1 ]
Chen, Gang [1 ]
Dresselhaus, Mildred S. [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
phonon transport; Boltzmann equation; thermal conductivity; core-shell; nanowire; nanocomposites; nanoporous material; superlattices; thermoelectrics;
D O I
10.1115/HT2005-72198
中图分类号
O414.1 [热力学];
学科分类号
摘要
Core-shell heterostructures could potentially become the building blocks of nanotechnology for electronic and optoelectronic applications. The increased surface or interface area will decrease the thermal conductivity of such nanostructures and impose challenges for the thermal management such devices. In the mean time, the decreased thermal conductivity might benefit the thermoelectric conversion efficiency. In this paper, a generic model is established to study phonon transport in core-shell nanowire structures in the longitudinal direction using the phonon Boltzmann equation. The model can be used to simulate a variety of nanostructures, including nanowires and nanocomposites by changing some of the input parameters. We first report the dependence of the thermal conductivity on the surface conditions and the core-shell geometry for silicon core germanium shell and tubular silicon nanowires. When the scattering at the outer shell surface in the generic model is assumed to be totally specular, the core-shell nanostructure resembles a simulation unit cell of periodic two-dimensional (2D) nanocomposites. Thermal conductivity of nanowire composites and cylindrical nanoporous material in longitudinal direction is thus predicted as a function of the size of the nanowires and nanopores, and the volumetric fraction of the constituent materials. Results of this study can be used to direct the development of high efficiency thermoelectric materials.
引用
收藏
页码:895 / 901
页数:7
相关论文
共 50 条
  • [1] Thermal conductivity reduction in core-shell nanowires
    Hu, Ming
    Zhang, Xiaoliang
    Giapis, Konstantinos P.
    Poulikakos, Dimos
    [J]. PHYSICAL REVIEW B, 2011, 84 (08):
  • [2] Thermal conductivity modeling of core-shell and tubular nanowires
    Yang, RG
    Chen, G
    Dresselhaus, MS
    [J]. NANO LETTERS, 2005, 5 (06) : 1111 - 1115
  • [3] Tailoring Thermal Conductivity of Ge/Si Core-Shell Nanowires
    Sarikurt, Sevil
    Sevik, Cem
    Kinaci, Alper
    Haskins, Justin B.
    Cagin, Tahir
    [J]. Proceedings of the TMS Middle East - Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015), 2015, : 433 - 440
  • [4] Thermal conductivity of liquid/carbon nanotube core-shell nanocomposites
    Yamada, Yutaka
    Askounis, Alexandros
    Ikuta, Tatsuya
    Takahashi, Koji
    Takata, Yasuyuki
    Sefiane, Khellil
    [J]. JOURNAL OF APPLIED PHYSICS, 2017, 121 (01)
  • [5] Thermal conductivity of core-shell nanocomposites for enhancing thermoelectric performance
    Poon, S. J.
    Petersen, A. S.
    Wu, Di
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (17)
  • [6] Significant Reduction of Thermal Conductivity in Si/Ge Core-Shell Nanowires
    Hu, Ming
    Giapis, Konstantinos P.
    Goicochea, Javier V.
    Zhang, Xiaoliang
    Poulikakos, Dimos
    [J]. NANO LETTERS, 2011, 11 (02) : 618 - 623
  • [7] Interface Effects on Thermal Conductivity of Bi/Te Core-shell Nanowires
    Kang, Joohoon
    Ham, Jinhee
    Roh, Jong Wook
    Lee, Seunghyun
    Lee, Wooyoung
    [J]. INEC: 2010 3RD INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2010, : 115 - 116
  • [8] Effective medium approach to thermal conductivity: applying to core-shell nanocomposites
    Poon, S. J.
    Petersen, A. S.
    [J]. EMERGING MATERIALS RESEARCH, 2012, 1 (06) : 286 - 291
  • [9] Tailoring thermal conductivity of silicon/germanium nanowires utilizing core-shell architecture
    Sarikurt, S.
    Ozden, A.
    Kandemir, A.
    Sevik, C.
    Kinaci, A.
    Haskins, J. B.
    Cagin, T.
    [J]. JOURNAL OF APPLIED PHYSICS, 2016, 119 (15)
  • [10] Interface bond relaxation on the thermal conductivity of Si/Ge core-shell nanowires
    Chen, Weifeng
    He, Yan
    Sun, Changqing
    Ouyang, Gang
    [J]. AIP ADVANCES, 2016, 6 (01):