Tailoring Thermal Conductivity of Ge/Si Core-Shell Nanowires

被引:0
|
作者
Sarikurt, Sevil [1 ,5 ]
Sevik, Cem [2 ]
Kinaci, Alper [3 ,5 ]
Haskins, Justin B. [4 ,5 ]
Cagin, Tahir [4 ,5 ]
机构
[1] Dokuz Eylul Univ, Dept Phys, Fac Sci, TR-35390 Izmir, Turkey
[2] Anadolu Univ, Dept Mech Engn, Fac Engn, TR-26555 Eskisehir, Turkey
[3] Argonne Natl Lab, Argonne, IL 60439 USA
[4] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[5] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
关键词
Ge/Si core-shell nanowires; thermal conductivity; thermoelectrics; NANOSCALE ELECTRONIC DEVICES; SILICON NANOWIRES; TRANSPORT-COEFFICIENTS; MOLECULAR-DYNAMICS; CARBON NANOTUBES; HETEROSTRUCTURES;
D O I
10.1002/9781119090427.ch46
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Low-dimensional nanostructured materials show large variation in their thermal transport properties. Here, we investigate the influence of core-shell architecture on nanowire ( NW) thermal conductivity using molecular dynamics with Tersoff potentials Si-Ge, to design structures with desired thermal conductivity for thermoelectric device applications. To explore the parameter space, we have calculated thermal conductivity values of Ge/Si core-shell NWs having different lengths, cross-section sizes and Ge concentrations at several temperatures. We have found that ( 1) increasing the cross-sectional area of pure Si NW causes an increase in thermal conductivity ( 2) increasing the Ge core size in the Ge/Si structure results in a decrease in the thermal conductivity values at 300. ( 3) there is no significant variation in the thermal conductivity of Si NW for temperature values larger than 300. ( 4) the predicted thermal conductivity around 10 W m(-1)K(-1) is still larger than the value convenient for thermoelectric applications.
引用
收藏
页码:433 / 440
页数:8
相关论文
共 50 条
  • [1] Significant Reduction of Thermal Conductivity in Si/Ge Core-Shell Nanowires
    Hu, Ming
    Giapis, Konstantinos P.
    Goicochea, Javier V.
    Zhang, Xiaoliang
    Poulikakos, Dimos
    [J]. NANO LETTERS, 2011, 11 (02) : 618 - 623
  • [2] Interface bond relaxation on the thermal conductivity of Si/Ge core-shell nanowires
    Chen, Weifeng
    He, Yan
    Sun, Changqing
    Ouyang, Gang
    [J]. AIP ADVANCES, 2016, 6 (01):
  • [3] Thermal Conductivity of Ge and Ge-Si Core-Shell Nanowires in the Phonon Confinement Regime
    Wingert, Matthew C.
    Chen, Zack C. Y.
    Dechaumphai, Edward
    Moon, Jaeyun
    Kim, Ji-Hun
    Xiang, Jie
    Chen, Renkun
    [J]. NANO LETTERS, 2011, 11 (12) : 5507 - 5513
  • [4] Thermal Conductivity Reduction in Si/Ge Core/Shell Nanowires
    Crismari, Dmitrii V.
    Nike, Denis L.
    [J]. JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2012, 7 (07) : 701 - 705
  • [5] Size-Dependent Thermal Boundary Resistance and Thermal Conductivity in Si/Ge Core-Shell Nanowires
    Zhang, Liang
    Ouyang, Gang
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (01) : 361 - 366
  • [6] Tailoring thermal conductivity of silicon/germanium nanowires utilizing core-shell architecture
    Sarikurt, S.
    Ozden, A.
    Kandemir, A.
    Sevik, C.
    Kinaci, A.
    Haskins, J. B.
    Cagin, T.
    [J]. JOURNAL OF APPLIED PHYSICS, 2016, 119 (15)
  • [7] Interfacial intermixing of Ge/Si core-shell nanowires by thermal annealing
    Zhang, Xiaolong
    Jevasuwan, Wipakorn
    Fukata, Naoki
    [J]. NANOSCALE, 2020, 12 (14) : 7572 - 7576
  • [8] Thermal and tensile properties of Si/Ge core-shell and superlattice nanowires
    Hai-jun Shen
    [J]. Frontiers of Materials Science in China, 2009, 3 : 415 - 420
  • [9] Thermal and tensile properties of Si/Ge core-shell and superlattice nanowires
    Shen, Hai-jun
    [J]. FRONTIERS OF MATERIALS SCIENCE, 2009, 3 (04) : 415 - 420
  • [10] Thermal conductivity reduction in core-shell nanowires
    Hu, Ming
    Zhang, Xiaoliang
    Giapis, Konstantinos P.
    Poulikakos, Dimos
    [J]. PHYSICAL REVIEW B, 2011, 84 (08):