A CUDA Implementation of the Standard Particle Swarm Optimization

被引:0
|
作者
Hussain, Md. Maruf [1 ]
Hattori, Hiroshi [2 ]
Fujimoto, Noriyuki [2 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Sci, Sakai, Osaka, Japan
[2] Osaka Prefecture Univ, Grad Sch Engn, Sakai, Osaka, Japan
关键词
Particle Swarm Optimization (PSO); GPGPU; coalescing memory access; cuRAND; atomic function;
D O I
10.1109/SYNASC.2016.37
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The social learning process of birds and fishes inspired the development of the heuristic Particle Swarm Optimization (PSO) search algorithm. The advancement of Graphics Processing Units (GPU) and the Compute Unified Device Architecture (CUDA) platform plays a significant role to reduce the computational time in search algorithm development. This paper presents a good implementation for the Standard Particle Swarm Optimization (SPSO) on a GPU based on the CUDA architecture, which uses coalescing memory access. The algorithm is evaluated on a suite of well-known benchmark optimization functions. The experiments are performed on an NVIDIA GeForce GTX 980 GPU and a single core of 3.20 GHz Intel Core i5 4570 CPU and the test results demonstrate that the GPU algorithm runs about maximum 46 times faster than the corresponding CPU algorithm. Therefore, this proposed algorithm can be used to improve required time to solve optimization problems. Index terms-Particle Swarm Optimization (PSO),
引用
收藏
页码:219 / 226
页数:8
相关论文
共 50 条
  • [21] Visualizing particle swarm optimization - Gaussian particle swarm optimization
    Secrest, BR
    Lamont, GB
    [J]. PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, : 198 - 204
  • [22] Implementation of Binary Particle Swarm Optimization for DNA Sequence Design
    Khalid, Noor Khafifah
    Ibrahim, Zuwairie
    Kurniawan, Tri Basuki
    Khalid, Marzuki
    Engelbrecht, Andries P.
    [J]. DISTRIBUTED COMPUTING, ARTIFICIAL INTELLIGENCE, BIOINFORMATICS, SOFT COMPUTING, AND AMBIENT ASSISTED LIVING, PT II, PROCEEDINGS, 2009, 5518 : 450 - +
  • [23] Particle Swarm Optimization parallelism implementation to classify Multiclass Datasets
    Balasaraswathi, M.
    Kalpana, B.
    [J]. 2017 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND SIGNAL PROCESSING (ICCCSP), 2017, : 161 - 164
  • [24] Implementation of Neural Network in Particle Swarm Optimization (PSO) Techniques
    Chaurasia, Suhashini
    Daware, Shubhangi
    [J]. IAMA: 2009 INTERNATIONAL CONFERENCE ON INTELLIGENT AGENT & MULTI-AGENT SYSTEMS, 2009, : 109 - 110
  • [25] Implementation of Hybrid Particle Swarm Optimization for Optimized Regression Testing
    Prakash, V.
    Gopalakrishnan, S.
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (03): : 2575 - 2590
  • [26] FPGA implementation of particle swarm optimization for Bayesian network learning
    Hibbard, Matthew J.
    Peskin, Eric R.
    Sahin, Ferat
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2013, 39 (08) : 2454 - 2468
  • [27] Implementation of particle swarm optimization in construction of optimal risky portfolios
    Dashti, M. A.
    Farjami, Y.
    Vedadi, A.
    Anisseh, M.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-4, 2007, : 812 - +
  • [28] An Implementation of Digital Image Watermarking Based on Particle Swarm Optimization
    Hai Tao
    Zain, Jasni Mohamad
    Abd Alla, Ahmed N.
    Qin Hongwu
    [J]. NETWORKED DIGITAL TECHNOLOGIES, PT 1, 2010, 87 : 314 - +
  • [29] Based on the Particle Swarm Optimization of Truck Crane Telescopic Jib Optimization and Implementation
    Xu, Gening
    Hou, Xiaoyan
    Dong, Qing
    [J]. FRONTIERS OF MANUFACTURING SCIENCE AND MEASURING TECHNOLOGY III, PTS 1-3, 2013, 401 : 548 - 553
  • [30] CUDA implementation of the antlion optimization algorithm
    Davendra, Donald
    Metlicka, Magdalena
    Bialic-Davendra, Magdalena
    [J]. INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2023, 38 (02) : 118 - 139