A CUDA Implementation of the Standard Particle Swarm Optimization

被引:0
|
作者
Hussain, Md. Maruf [1 ]
Hattori, Hiroshi [2 ]
Fujimoto, Noriyuki [2 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Sci, Sakai, Osaka, Japan
[2] Osaka Prefecture Univ, Grad Sch Engn, Sakai, Osaka, Japan
关键词
Particle Swarm Optimization (PSO); GPGPU; coalescing memory access; cuRAND; atomic function;
D O I
10.1109/SYNASC.2016.37
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The social learning process of birds and fishes inspired the development of the heuristic Particle Swarm Optimization (PSO) search algorithm. The advancement of Graphics Processing Units (GPU) and the Compute Unified Device Architecture (CUDA) platform plays a significant role to reduce the computational time in search algorithm development. This paper presents a good implementation for the Standard Particle Swarm Optimization (SPSO) on a GPU based on the CUDA architecture, which uses coalescing memory access. The algorithm is evaluated on a suite of well-known benchmark optimization functions. The experiments are performed on an NVIDIA GeForce GTX 980 GPU and a single core of 3.20 GHz Intel Core i5 4570 CPU and the test results demonstrate that the GPU algorithm runs about maximum 46 times faster than the corresponding CPU algorithm. Therefore, this proposed algorithm can be used to improve required time to solve optimization problems. Index terms-Particle Swarm Optimization (PSO),
引用
收藏
页码:219 / 226
页数:8
相关论文
共 50 条
  • [1] Multi-swarm particle swarm optimization based on CUDA for sparse reconstruction
    Han, Wencheng
    Li, Hao
    Gong, Maoguo
    Li, Jianzhao
    Liu, Yiting
    Wang, Zhenkun
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2022, 75
  • [2] A parallel particle swarm optimization algorithm based on GPU/CUDA
    Zhuo, Yanhong
    Zhang, Tao
    Du, Feng
    Liu, Ruilin
    [J]. APPLIED SOFT COMPUTING, 2023, 144
  • [3] Defining a standard for particle swarm optimization
    Bratton, Daniel
    Kennedy, James
    [J]. 2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, : 120 - +
  • [4] A Parallel Multi-swarm Particle Swarm Optimization Algorithm Based on CUDA Streams
    Ma, Xuan
    Han, Wencheng
    [J]. 2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 3002 - 3007
  • [5] Evaluation of parallel particle swarm optimization algorithms within the CUDA™ architecture
    Mussi, Luca
    Daolio, Fabio
    Cagnoni, Stefano
    [J]. INFORMATION SCIENCES, 2011, 181 (20) : 4642 - 4657
  • [6] Parallel Particle swarm optimization Algorithm based on CUDA in the AWS Cloud
    Li, Jianming
    Wang, Wei
    Hu, Xiangpei
    [J]. 2015 NINTH INTERNATIONAL CONFERENCE ON FRONTIER OF COMPUTER SCIENCE AND TECHNOLOGY FCST 2015, 2015, : 8 - 12
  • [7] CUDA-Based Particle Swarm Optimization in Reflectarray Antenna Synthesis
    Capozzoli, Amedeo
    Curcio, Claudio
    Liseno, Angelo
    [J]. ADVANCED ELECTROMAGNETICS, 2020, 9 (02) : 66 - 74
  • [8] Hardware Implementation of the Particle Swarm Optimization Algorithm
    Talaska, Tomasz
    Dlugosz, Rafal
    Pedrycz, Witold
    [J]. PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS - MIXDES 2017, 2017, : 521 - 526
  • [9] Parallel Implementation of Particle Swarm Optimization on FPGA
    Da Costa, Alexandre L. X.
    Silva, Caroline A. D.
    Torquato, Matheus F.
    Fernandes, Marcelo A. C.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (11) : 1875 - 1879
  • [10] Implementation of Particle Swarm Optimization in FPSoC Devices
    Fernandez Molanes, Roberto
    Garaj, Martin
    Tang, Wallace
    Rodriguez-Andina, Juan J.
    Farina, Jose
    Tsang, Kim F.
    Man, Kim F.
    [J]. 2017 IEEE 26TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2017, : 1274 - 1279