Hierarchical Krylov subspace reduced order modeling of large RLC circuits

被引:0
|
作者
Li, Duo [1 ]
Tan, Sheldon X-D. [1 ]
机构
[1] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a new model order reduction approach for large interconnect circuits using hierarchical decomposition and Krylov subspace projection-based model order reduction. The new approach, called hiePrimor, first partitions a large interconnect circuit into a number of smaller subcircuits and then performs the projection-based model order reduction on each of subcircuits in isolation and on the top level circuit thereafter. The new approach can exploit the parallel computing to speed up the reduction process. Theoretically we show hiePrimor can have the same accuracy as the flat reduction method given the same reduction order and it can also preserves the passivity of the reduced models as well. We also show that partitioning is important for hierarchical projection-based reduction and the minimum-span objective should be required to archive best performance for hierarchical reduction. The proposed method is suitable for reducing large global interconnects like coupled bus, transmission lines, large clock nets in the post layout stage. Experimental results demonstrate that hiePrimor can be significantly faster than flat projection method like PRIMA and be order of magnitude faster than PRIMA with parallel computing without loss of accuracy.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 50 条
  • [21] Modeling of first-order photobleaching kinetics using Krylov subspace spectral methods
    Sheikholeslami, Somayyeh
    Lambers, James V.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 2153 - 2172
  • [22] A Krylov subspace method for large estimation problems
    Schneider, MK
    Willsky, AS
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1701 - 1704
  • [23] Reduced Order Modeling for RLC Interconnect Tree Using Hurwitz Polynomial
    Xiao-Dong Yang
    Chung-Kuan Cheng
    Walter H. Ku
    Robert Carragher
    [J]. Analog Integrated Circuits and Signal Processing, 2002, 31 : 193 - 208
  • [24] Reduced order modeling for RLC interconnect tree using hurwitz polynomial
    Yang, XD
    Cheng, CK
    Ku, WH
    Carragher, R
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2002, 31 (03) : 193 - 208
  • [25] Rapid Nonlinear Analysis for Electrothermal Microgripper Using Reduced Order Model based Krylov Subspace
    Guan, Le
    Chu, Jinkui
    Qi, Dongzhou
    Hao, Xinchun
    Wang, Xiaodong
    [J]. ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [26] Rapid Nonlinear Analysis for Electrothermal Microgripper Using Reduced Order Model Based on Krylov Subspace
    Chu, Jin-Kui
    Guan, Le
    Qi, Dong-Zhou
    Hao, Xiu-Chun
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2008, 9 (04) : 333 - 338
  • [27] Geometric modeling of nonlinear RLC circuits
    Blankenstein, G
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (02) : 396 - 404
  • [28] A novel reduced-order algorithm for rational models based on Arnoldi process and Krylov subspace
    Chen, Jing
    Huang, Biao
    Gan, Min
    Chen, C. L. Philip
    [J]. AUTOMATICA, 2021, 129
  • [29] Rational Krylov reduced order modeling of multiscreen frequency selective surfaces
    Weile, DS
    Michielssen, E
    Gallivan, K
    [J]. IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - ANTENNAS: GATEWAYS TO THE GLOBAL NETWORK, VOLS 1-4, 1998, : 406 - 409
  • [30] A Krylov subspace approach to large portfolio optimization
    Bajeux-Besnainou, Isabelle
    Bandara, Wachindra
    Bura, Efstathia
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2012, 36 (11): : 1688 - 1699