Very high cycle fatigue of bearing steels with artificial defects in vacuum

被引:24
|
作者
Spriestersbach, D. [1 ]
Brodyanski, A. [2 ]
Loesch, J. [2 ]
Kopnarski, M. [2 ]
Kerscher, E. [1 ]
机构
[1] Univ Kaiserslautern, Mat Testing, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Inst Surface & Thin Film Anal, D-67663 Kaiserslautern, Germany
关键词
Very high cycle fatigue; High-strength steel; Fatigue crack initiation; Fine granular area; Vacuum; HIGH-STRENGTH STEELS; SUBSURFACE CRACK INITIATION; LONG-LIFE FATIGUE; REGIME; MECHANISM; PROPAGATION; MICROSTRUCTURE; STRESS; ENVIRONMENT; FAILURE;
D O I
10.1080/02670836.2015.1119931
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
At high-strength steels very high cycle fatigue (VHCF) failure always occurs at subsurface inclusions. As a result, the failure shows large scatter and is not observable or predictable prior to failure. In order to understand the mechanisms leading to crack initiation in VHCF, it is necessary to make the failure observable. Within our work, a new testing procedure is introduced that enables the simulation of subsurface conditions at the surface and thereby the localisation of the failure. Therefore, specimens with artificial surface defects were tested in vacuum atmosphere. In our work, we will show the testing procedure and the validation of the results. Further, the transferability of our results on the failure at subsurface inclusions is discussed.
引用
收藏
页码:1111 / 1118
页数:8
相关论文
共 50 条
  • [41] Crack initiation mechanisms and threshold values of very high cycle fatigue failure of high strength steels
    Spriestersbach, Daniel
    Grad, Patrick
    Kerscher, Eberhard
    XVII INTERNATIONAL COLLOQUIUM ON MECHANICAL FATIGUE OF METALS (ICMFM17), 2014, 74 : 84 - 91
  • [42] Effects of inclusion size and location on very-high-cycle fatigue behavior for high strength steels
    Lei, Zhengqiang
    Hong, Youshi
    Xie, Jijia
    Sun, Chengqi
    Zhao, Aiguo
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 558 : 234 - 241
  • [43] Mechanism of crack initiation and early growth of high strength steels in very high cycle fatigue regime
    Song, Qingyuan
    Sun, Chengqi
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 771
  • [44] Prediction of very high cycle fatigue failure for high strength steels, based on the inclusion geometrical properties
    Dominguez Almaraz, Gonzalo M.
    MECHANICS OF MATERIALS, 2008, 40 (08) : 636 - 640
  • [45] Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime
    Akiniwa, Yoshiaki
    Miyamoto, Nobuyuki
    Tsuru, Hirotaka
    Tanaka, Keisuke
    INTERNATIONAL JOURNAL OF FATIGUE, 2006, 28 (11) : 1555 - 1565
  • [46] Influence of defects on the very high cycle fatigue behaviour of forged aeronautic titanium alloy
    Nikitin, Alexander
    Palin-Luc, Thierry
    Shanyavskiy, Andrey
    Bathias, Claude
    FDMD II - JIP 2014 - FATIGUE DESIGN & MATERIAL DEFECTS, 2014, 12
  • [47] Mechanism of subsurface microstructural fatigue crack initiation during high and very-high cycle fatigue of advanced bainitic steels
    Gao, Guhui
    Liu, Rong
    Fan, Yusong
    Qian, Guian
    Gui, Xiaolu
    Misra, R.D.K.
    Bai, Bingzhe
    Journal of Materials Science and Technology, 2022, 108 : 142 - 157
  • [48] A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime
    Chengqi Sun
    Xiaolong Liu
    Youshi Hong
    Acta Mechanica Sinica, 2015, 31 : 383 - 391
  • [49] Mechanism of subsurface microstructural fatigue crack initiation during high and very-high cycle fatigue of advanced bainitic steels
    Gao, Guhui
    Liu, Rong
    Fan, Yusong
    Qian, Guian
    Gui, Xiaolu
    Misra, R. D. K.
    Bai, Bingzhe
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 108 : 142 - 157
  • [50] A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime
    Sun, Chengqi
    Liu, Xiaolong
    Hong, Youshi
    ACTA MECHANICA SINICA, 2015, 31 (03) : 383 - 391