Using machine learning to predict fracture risk in large US population: An Analysis of NHANES 2005-2014

被引:0
|
作者
Pawar, Priyanka [1 ]
Malkauthekar, Mahananda [1 ]
机构
[1] Govt Engn Coll, Karad, India
关键词
D O I
暂无
中图分类号
R392 [医学免疫学];
学科分类号
100102 ;
摘要
128
引用
收藏
页码:AB44 / AB44
页数:1
相关论文
共 50 条
  • [41] Using Machine Learning to Predict Rehabilitation Outcomes in Postacute Hip Fracture Patients
    Shtar, Guy
    Rokach, Lior
    Shapira, Bracha
    Nissan, Ran
    Hershkovitz, Avital
    [J]. ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2021, 102 (03): : 386 - 394
  • [42] USING MACHINE LEARNING TO PREDICT THE ADOPTION OF BUILDING ELECTRIFICATION TECHNOLOGIES IN US HOUSEHOLDS
    Majowicz, Andrew
    Odonkor, Philip
    [J]. PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 3A, 2023,
  • [43] Prevalence and risk factors for anemia in US elderly population: Analysis of NHANES 1999-2002.
    Pan, Y.
    Jackson, R.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2006, 163 (11) : S251 - S251
  • [44] Re: 'Physical functioning and risk for sleep disorders in US adults: results from the National Health and Nutrition Examination Survey 2005-2014'
    Gao, S.
    [J]. PUBLIC HEALTH, 2018, 160 : 159 - 160
  • [45] Predicting Body Composition In The US Population Using Machine Learning Models
    Xu, Huaijin
    Situ, Jason
    Hou, Ruibo
    Li, Mingxi
    Gao, Xiaotian
    [J]. MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2024, 56 (10) : 479 - 479
  • [46] Development and validation of a predictive model for depression risk in the US adult population: Evidence from the 2007-2014 NHANES
    Tian, Wei
    Zhang, Yafeng
    Han, Xinhao
    Li, Yan
    Liu, Junping
    Wang, Hongying
    Zhang, Qiuju
    Ma, Yujie
    Yan, Guangcan
    [J]. BMC PSYCHOLOGY, 2023, 11 (01)
  • [47] Machine Learning Approaches for Predicting Fatty Acid Classes in Popular US Snacks Using NHANES Data
    Tachie, Christabel Y. E.
    Obiri-Ananey, Daniel
    Tawiah, Nii Adjetey
    Attoh-Okine, Nii
    Aryee, Alberta N. A.
    [J]. NUTRIENTS, 2023, 15 (15)
  • [48] Assessing Personalized Melanoma Risk by Using Machine Learning to Predict Recurrence
    Scholer, A. J.
    Garland-Kledzik, M.
    HsinFang, L. H.
    Stern, S.
    Santamaria-Barria, J.
    Khader, A.
    Leland, F.
    Fischer, T. D.
    Essner, R.
    [J]. ANNALS OF SURGICAL ONCOLOGY, 2020, 27 (SUPPL 1) : S175 - S176
  • [49] USING UNSUPERVISED MACHINE LEARNING FOR ASSESSMENT OF LEFT VENTRICULAR DIASTOLIC FUNCTION AND RISK STRATIFICATION IN A LARGE POPULATION
    Chao, Chieh Ju
    Kato, Nahoko
    Lopez-Jimenez, Francisco
    Lin, Grace
    Kane, Garvan C.
    Pellikka, Patricia A.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 3481 - 3481
  • [50] Machine Learning Analysis of Handgun Transactions to Predict Firearm Suicide Risk
    Laqueur, Hannah S.
    Smirniotis, Colette
    McCort, Christopher
    Wintemute, Garen J.
    [J]. JAMA NETWORK OPEN, 2022, 5 (07) : E2221041