Dimensionality Reduction techniques: An operational comparison on multispectral satellite images using unsupervised clustering

被引:0
|
作者
Journaux, Ludovic [1 ]
Tizon, Xavier [1 ]
Foucherot, Irene [1 ]
Gouton, Pierre [1 ]
机构
[1] Univ Bourgogne, CNRS, UMR 5158, LE2I, BP 47870, F-21078 Dijon, France
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multispectral satellite imagery provides us with useful but redundant datasets. Using Dimensionality Reduction (DR) algorithms, these datasets can be made easier to explore and to use. We present in this study an objective comparison of five DR methods, by evaluating their capacity to provide a usable input to the K-means clustering algorithm. We also suggest a method to automatically find a suitable number of classes K, using objective "cluster validity indexes" over a range of values for K Ten Landsat images have been processed, yielding a classification rate in the 70-80% range. Our results also show that classical linear methods, though slightly outperformed by more recent nonlinear algorithms, still offer a reasonable trade-off.
引用
收藏
页码:242 / +
页数:2
相关论文
共 50 条
  • [1] Multispectral satellite images processing through dimensionality reduction
    Journaux, Ludovic
    Foucherot, Irene
    Gouton, Pierre
    [J]. SIGNAL PROCESSING FOR IMAGE ENHANCEMENT AND MULTIMEDIA PROCESSING, 2008, : 59 - 66
  • [2] Performance evaluation of dimensionality reduction techniques for multispectral images
    Carmona, Pedro Latorre
    Lenz, Reiner
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2007, 17 (03) : 202 - 217
  • [3] Analysis of Unsupervised Dimensionality Reduction Techniques
    Kumar, Ch. Aswani
    [J]. COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2009, 6 (02) : 217 - 227
  • [4] Comparison of Dimensionality Reduction Techniques for Clustering and Visualization of Load Profiles
    Arechiga, A.
    Barocio, E.
    Ayon, J. J.
    Garcia-Baleon, H. A.
    [J]. 2016 IEEE PES TRANSMISSION & DISTRIBUTION CONFERENCE AND EXPOSITION-LATIN AMERICA (PES T&D-LA), 2016,
  • [5] Spectral Unmixing of Multispectral Satellite Images with Dimensionality Expansion Using Morphological Profiles
    Bernabe, Sergio
    Marpu, Prashanth Reddy
    Plaza, Antonio
    Benediktsson, Jon Atli
    [J]. SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING VIII, 2012, 8514
  • [6] Unsupervised pixel clustering in multispectral images by genetic programming
    De Falco, I
    Della Cioppa, A
    Tarantino, E
    [J]. Soft Computing: Methodologies and Applications, 2005, : 137 - 149
  • [7] Unsupervised dimensionality reduction of hyperspectral images using representations of reflectance spectra
    Aria, S. Enayat Hosseini
    Menenti, Massimo
    Gorte, Ben G. H.
    Homayouni, Saeid
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (20) : 7820 - 7845
  • [8] Multispectral Images Segmentation using Fuzzy Probabilistic Local Cluster for unsupervised clustering
    Luis Mantilla, S. C.
    Yari, Yessenia
    [J]. 2017 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2017,
  • [9] Dimensionality reduction and unsupervised clustering for EELS-SI
    Ryu, Jinseok
    Kim, Hyeohn
    Kim, Ryeong Myeong
    Kim, Sungtae
    Jo, Jaeyeon
    Lee, Sangmin
    Nam, Ki Tae
    Joo, Young-Chang
    Yi, Gyu-Chul
    Lee, Jaejin
    Kim, Miyoung
    [J]. ULTRAMICROSCOPY, 2021, 231
  • [10] Improved Visual Clustering through Unsupervised Dimensionality Reduction
    Thangavel, K.
    Alagambigai, P.
    Devakumar, D.
    [J]. ROUGH SETS, FUZZY SETS, DATA MINING AND GRANULAR COMPUTING, PROCEEDINGS, 2009, 5908 : 439 - +