Analysis of Unsupervised Dimensionality Reduction Techniques

被引:38
|
作者
Kumar, Ch. Aswani [1 ]
机构
[1] VIT Univ, Sch Informat Technol & Engn, Networks & Informat Secur Div, Vellore 632014, Tamil Nadu, India
关键词
Dimensionality reduction; Information retrieval; Latent semantic indexing; Matrix decompositions; ALGORITHMS;
D O I
10.2298/csis0902217K
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Domains such as text, images etc contain large amounts of redundancies and ambiguities among the attributes which result in considerable noise effects (i.e. the data is high dimension). Retrieving the data from high dimensional datasets is a big challenge. Dimensionality reduction techniques have been a successful avenue for automatically extracting the latent concepts by removing the noise and reducing the complexity in processing the high dimensional data. In this paper we conduct a systematic study on comparing the unsupervised dimensionality reduction techniques for text retrieval task. We analyze these techniques from the view of complexity, approximation error and retrieval quality with experiments on four testing document collections.
引用
收藏
页码:217 / 227
页数:11
相关论文
共 50 条
  • [1] Divergent Projection Analysis for Unsupervised Dimensionality Reduction
    Wang, Shanshan
    Bai, Lan
    Chen, Xu
    Wang, Zhen
    Shao, Yuan-Hai
    [J]. 8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2020 & 2021): DEVELOPING GLOBAL DIGITAL ECONOMY AFTER COVID-19, 2022, 199 : 384 - 391
  • [2] Evaluation of effect of unsupervised dimensionality reduction techniques on automated arrhythmia classification
    Rajagopal, Rekha
    Ranganathan, Vidhyapriya
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 34 : 1 - 8
  • [3] Non-linear dimensionality reduction techniques for unsupervised feature extraction
    De Backer, S
    Naud, A
    Scheunders, P
    [J]. PATTERN RECOGNITION LETTERS, 1998, 19 (08) : 711 - 720
  • [4] Dimensionality reduction by unsupervised regression
    Carreira-Perpinan, Miguel A.
    Lu, Zhengdong
    [J]. 2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 2523 - +
  • [5] Discriminative Unsupervised Dimensionality Reduction
    Wang, Xiaoqian
    Liu, Yun
    Nie, Feiping
    Huang, Heng
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3925 - 3931
  • [6] Dimensionality reduction of unsupervised data
    Dash, M
    Liu, H
    Yao, L
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1997, : 532 - 539
  • [7] Analysis of Dimensionality Reduction Techniques on Big Data
    Reddy, G. Thippa
    Reddy, M. Praveen Kumar
    Lakshmanna, Kuruva
    Kaluri, Rajesh
    Rajput, Dharmendra Singh
    Srivastava, Gautam
    Baker, Thar
    [J]. IEEE ACCESS, 2020, 8 : 54776 - 54788
  • [8] An Analysis of Dimensionality Reduction Techniques for Visualizing Evolution
    De Lorenzo, Andrea
    Medvet, Eric
    Tusar, Tea
    Bartoli, Alberto
    [J]. PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 1864 - 1872
  • [9] Sparse Unsupervised Dimensionality Reduction Algorithms
    Dou, Wenjun
    Dai, Guang
    Xu, Congfu
    Zhang, Zhihua
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I: EUROPEAN CONFERENCE, ECML PKDD 2010, 2010, 6321 : 361 - 376
  • [10] Unsupervised Adaptive Embedding for Dimensionality Reduction
    Wang, Jingyu
    Xie, Fangyuan
    Nie, Feiping
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) : 6844 - 6855