Branes and polytopes

被引:0
|
作者
Romano, Luca [1 ]
机构
[1] UAM CSIC, Inst Fis Teor, C Nicolas Cabrera 13-15, E-28049 Madrid, Spain
关键词
supergravity; p-brane; U-duality; string theory; Coxeter group; Weyl group; wrapping rules; U-DUALITY;
D O I
10.1088/1751-8121/ab3a1f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the hierarchies of half-supersymmetric branes in maximal supergravity theories. By studying the action of the Weyl group of the U-duality group of maximal supergravities we discover a set of universal algebraic rules describing the number of independent 1/2-BPS p-branes, rank by rank, in any dimension. We show that these relations describe the symmetries of certain families of uniform polytopes. This induces a correspondence between half-supersymmetric branes and vertices of opportune uniform polytopes. We show that half-supersymmetric 0-, 1- and 2-branes are in correspondence with the vertices of the k(21), 2(k1) and 1(k2) families of uniform polytopes, respectively, while 3-branes correspond to the vertices of the rectified version of the 2(k)(1) family. For 4-branes and higher rank solutions we find a general behavior. The interpretation of half-supersymmetric solutions as vertices of uniform polytopes reveals some intriguing aspects. One of the most relevant is a triality relation between 0-, 1- and 2-branes.
引用
收藏
页数:38
相关论文
共 50 条
  • [41] Mixed Polytopes
    Discrete & Computational Geometry, 2003, 29 : 575 - 593
  • [42] Splitting polytopes
    Herrmann, Sven
    Joswig, Michael
    MUENSTER JOURNAL OF MATHEMATICS, 2008, 1 (01): : 109 - 141
  • [43] PATHS ON POLYTOPES
    LARMAN, DG
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1970, 20 : 161 - &
  • [44] On the Reconstruction of Polytopes
    Doolittle, Joseph
    Nevo, Eran
    Pineda-Villavicencio, Guillermo
    Ugon, Julien
    Yost, David
    DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 61 (02) : 285 - 302
  • [45] Hypergraph polytopes
    Dosen, Kosta
    Petric, Zoran
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (12) : 1405 - 1444
  • [46] Polytopes in arrangements
    Aronov, Boris
    Dey, Tamal K.
    Proceedings of the Annual Symposium on Computational Geometry, 1999, : 154 - 162
  • [47] Decomposability of polytopes
    Przeslawski, Krzysztof
    Yost, David
    DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 39 (1-3) : 460 - 468
  • [48] LAWRENCE POLYTOPES
    BAYER, M
    STURMFELS, B
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (01): : 62 - 79
  • [49] Equipartite polytopes
    Branko Grünbaum
    Tomáš Kaiser
    Daniel Král’
    Moshe Rosenfeld
    Israel Journal of Mathematics, 2010, 179 : 235 - 252
  • [50] Gelfand-Tsetlin polytopes and Feigin-Fourier-Littelmann-Vinberg polytopes as marked poset polytopes
    Ardila, Federico
    Bliem, Thomas
    Salazar, Dido
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (08) : 2454 - 2462