Comparison of the chemical compositions of Martian soils reveals distinct mixing trends, resulting from admixture of variable amounts of sulfate/chloride cement at Viking landing sites and of the local andesitic rock fragments at the Mars Pathfinder site. These trends, most easily visualized in plots of oxides versus SO3, intersect approximately at a common composition, thought to represent a global dust that has been homogenized by pervasive aeolian activity. The source rocks that were weathered to produce the global dust are inferred to have been basalts rather than felsic rocks, based on the observation that the dust lies along well-established chemical weathering trends for terrestrial basalts. The basaltic protolith was chemically similar (e.g., high Fe/Mg, low Al2O3) to basaltic shergottite meteorites. Chemical changes during the weathering of Martian basaltic rocks are apparently not as drastic as in terrestrial weathering, perhaps because of evaporation of hydrous fluids that leave soluble components behind in the residue. Comparison with chemical trends for previously proposed Martian soil-formation mechanisms suggests that palagonitization of basalts more readily explains the dust composition than do hydrothermal alteration at higher temperatures or reactions of rocks with an acid fog produced by volcanic exhalations. Local or temporal processing of dust into soil involves not only cementation by salts and mixing with rock fragments, but also chemical fractionations of Fe2O3/TiO2 presumably resulting from aeolian sorting by grain size and density. If the global dust represents a broad average of the Martian surficial or upper crustal composition, the planer's surface geology is dominated by basaltic volcanic rocks and evaporitic salts. Copyright (C) 2000 Elsevier Science Ltd.