Phase-Locking Value Based Graph Convolutional Neural Networks for Emotion Recognition

被引:138
|
作者
Wang, Zhongmin [1 ,2 ]
Tong, Yue [2 ]
Heng, Xia [1 ,2 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Comp Sci & T Imol, Xian 710121, Shaanxi, Peoples R China
[2] Xian Univ Posts & Telecommun, Shaanxi Key Lab Network Data Anal & Intelligent P, Xian 710121, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
EEG emotion recognition; phase-locking value; graph convolutional neural networks; brain network; functional connectivity; EEG; FEATURES;
D O I
10.1109/ACCESS.2019.2927768
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recognition of discriminative neural signatures and regions corresponding to emotions are important in understanding the neuron functional network underlying the human emotion process. Electroencephalogram (EEG) is a spatial discrete signal. In this paper, in order to extract the spatio-temporal characteristics and the inherent information implied by functional connections, a multichannel EEG emotion recognition method based on phase-locking value (PLV) graph convolutional neural networks (P-GCNN) is proposed. The basic idea of the proposed EEG emotion recognition method is using PLV-based brain network to model multi-channel EEG features as graph signals and then perform EEG emotion classification based on this model. Different from the traditional graph convolutional neural networks (GCNN) methods, the proposed P-GCNN method uses the PLV connectivity of EEG signals to determine the mode of emotional-related functional connectivity, which is used to represent the intrinsic relationship between EEG channels in different emotional states. On this basis, the neural network is trained to extract effective EEG emotional features. We conduct extensive experiments on the SJTU emotion EEG dataset (SEED) and DEAP dataset. The experimental results demonstrate that novel framework can improve the classification accuracy on both datasets, but not so effective on DEAP as on SEED, in which with 84.35% classification accuracy for SEED, and the average accuracies of 73.31%, 77.03% and 79.20% are, respectively, obtained for valence, arousal, and dominance classifications on the DEAP database.
引用
收藏
页码:93711 / 93722
页数:12
相关论文
共 50 条
  • [21] An improved graph convolutional neural network for EEG emotion recognition
    Xu, Bingyue
    Zhang, Xin
    Zhang, Xiu
    Sun, Baiwei
    Wang, Yujie
    Neural Computing and Applications, 2024, 36 (36) : 23049 - 23060
  • [22] DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation
    Ghosal, Deepanway
    Majumder, Navonil
    Poria, Soujanya
    Chhaya, Niyati
    Gelbukh, Alexander
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 154 - 164
  • [23] Bayesian Graph Neural Networks for EEG-Based Emotion Recognition
    Chen, Jianhui
    Qian, Hui
    Gong, Xiaoliang
    CLINICAL IMAGE-BASED PROCEDURES, DISTRIBUTED AND COLLABORATIVE LEARNING, ARTIFICIAL INTELLIGENCE FOR COMBATING COVID-19 AND SECURE AND PRIVACY-PRESERVING MACHINE LEARNING, CLIP 2021, DCL 2021, LL-COVID19 2021, PPML 2021, 2021, 12969 : 24 - 33
  • [24] Statistical analysis of the phase-locking value
    Celka, Patrick
    IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (09) : 577 - 580
  • [25] Facial Emotion Recognition using Convolutional Neural Networks
    Rzayeva, Zeynab
    Alasgarov, Emin
    2019 IEEE 13TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT 2019), 2019, : 91 - 95
  • [26] Emotion recognition by assisted learning with convolutional neural networks
    He, Xuanyu
    Zhang, Wei
    NEUROCOMPUTING, 2018, 291 : 187 - 194
  • [27] PHASE-LOCKING IN A NETWORK OF NEURAL OSCILLATORS
    ARENAS, A
    VICENTE, CJP
    EUROPHYSICS LETTERS, 1994, 26 (02): : 79 - 83
  • [28] Continuous Emotion Recognition with Spatiotemporal Convolutional Neural Networks
    Teixeira, Thomas
    Granger, Eric
    Lameiras Koerich, Alessandro
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [29] Facial Emotion Recognition using Convolutional Neural Networks
    Gopichand, G.
    Reddy, I. Ravi Prakash
    Santhi, H.
    Akula, Vijaya Krishna
    IMPENDING INQUISITIONS IN HUMANITIES AND SCIENCES, ICIIHS-2022, 2024, : 198 - 203
  • [30] Continuous Speech Emotion Recognition with Convolutional Neural Networks
    Vryzas, Nikolaos
    Vrysis, Lazaros
    Matsiola, Maria
    Kotsakis, Rigas
    Dimoulas, Charalampos
    Kalliris, George
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2020, 68 (1-2): : 14 - 24