Nonlinear dynamical systems and classical orthogonal polynomials

被引:11
|
作者
Kowalski, K
机构
[1] Department of Theoretical Physics, Univ. of Łódź, 90-236 Łódź
关键词
D O I
10.1063/1.531990
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is demonstrated that nonlinear dynamical systems with analytic nonlinearities can be brought down to the abstract Schrodinger equation in Hilbert space with boson Hamiltonian. The Fourier coefficients of the expansion of solutions to the Schrodinger equation in the particular occupation number representation are expressed by means of the classical orthogonal polynomials. The introduced formalism amounts to a generalization of the classical methods for linearization of nonlinear differential equations such as the Carleman embedding technique and Koopman approach. (C) 1997 American institute of Physics.
引用
收藏
页码:2483 / 2505
页数:23
相关论文
共 50 条
  • [41] Three lectures on classical orthogonal polynomials
    Ronveaux, A
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON CONTEMPORARY PROBLEMS IN MATHEMATICAL PHYSICS, 2000, : 283 - 306
  • [43] ON A NEW CHARACTERIZATION OF THE CLASSICAL ORTHOGONAL POLYNOMIALS
    DETTE, H
    STUDDEN, WJ
    [J]. JOURNAL OF APPROXIMATION THEORY, 1992, 71 (01) : 3 - 17
  • [44] A CHARACTERIZATION OF CLASSICAL ORTHOGONAL LAURENT POLYNOMIALS
    HENDRIKSEN, E
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1988, 91 (02): : 165 - 180
  • [45] ON AN EXTREMAL PROPERTY OF CLASSICAL ORTHOGONAL POLYNOMIALS
    ABYLOV, VA
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1989, 42 (12): : 45 - 46
  • [46] Discrete classical orthogonal polynomials and interferometry
    Perinová, V
    Luks, A
    [J]. COMMUNICATIONS IN DIFFERENCE EQUATIONS, 2000, : 311 - 325
  • [47] New characterizations of classical orthogonal polynomials
    Kwon, KH
    Littlejohn, LL
    Yoo, BH
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (02): : 199 - 213
  • [48] On classical orthogonal polynomials and differential operators
    Miranian, L
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (28): : 6379 - 6383
  • [49] Point vortices and classical orthogonal polynomials
    Maria V. Demina
    Nikolai A. Kudryashov
    [J]. Regular and Chaotic Dynamics, 2012, 17 : 371 - 384
  • [50] VARIATIONS ABOUT CLASSICAL ORTHOGONAL POLYNOMIALS
    MARONI, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (05): : 209 - 212