Intellino: Processor for Embedded Artificial Intelligence

被引:17
|
作者
Yoon, Young Hyun [1 ]
Hwang, Dong Hyun [1 ]
Yang, Jun Hyeok [1 ]
Lee, Seung Eun [1 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept Elect Engn, Seoul 01811, South Korea
来源
ELECTRONICS | 2020年 / 9卷 / 07期
基金
新加坡国家研究基金会;
关键词
AI processor; internet of things; machine learning; embedded system; low power; NETWORK;
D O I
10.3390/electronics9071169
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The development of computation technology and artificial intelligence (AI) field brings about AI to be applied to various system. In addition, the research on hardware-based AI processors leads to the minimization of AI devices. By adapting the AI device to the edge of internet of things (IoT), the system can perform AI operation promptly on the edge and reduce the workload of the system core. As the edge is influenced by the characteristics of the embedded system, implementing hardware which operates with low power in restricted resources on a processor is necessary. In this paper, we propose the intellino, a processor for embedded artificial intelligence. Intellino ensures low power operation based on optimized AI algorithms and reduces the workload of the system core through the hardware implementation of a neural network. In addition, intellino's dedicated protocol helps the embedded system to enhance the performance. We measure intellino performance, achieving over 95% accuracy, and verify our proposal with an field programmable gate array (FPGA) prototyping.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Embedded Artificial Intelligence: Intelligence on Devices
    Lin, Hsiao-Ying
    [J]. COMPUTER, 2023, 56 (09) : 90 - 93
  • [2] A Review of Artificial Intelligence in Embedded Systems
    Zhang, Zhaoyun
    Li, Jingpeng
    [J]. MICROMACHINES, 2023, 14 (05)
  • [3] Values Embedded in Legal Artificial Intelligence
    Surden, Harry
    [J]. IEEE TECHNOLOGY AND SOCIETY MAGAZINE, 2022, 41 (01) : 66 - 74
  • [4] Embedded Artificial Intelligence: The ARTEMIS Vision
    Serpanos, Dimitrios
    Ferrari, Gianluigi
    Nikolakopoulos, George
    Perez, Jon
    Tauber, Markus
    Van Baelen, Stefan
    [J]. COMPUTER, 2020, 53 (11) : 65 - 69
  • [5] A low power Artificial Intelligence Processor for Autonomous Mobile Robots
    Anilkumar, Abhishek
    Adarsh, P.
    Nalluri, Anantha Sayan
    Santhanam, Aswin
    Kedhari, Pavani Dheeraj
    [J]. PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 495 - 499
  • [6] A Signal Processor Teaches Generative Artificial Intelligence [SP Education]
    Radke, Richard J.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2024, 41 (02) : 6 - 10
  • [7] Embedded artificial intelligence for position sensitivity in thick scintillators
    Ticchi, Giacomo
    Buonanno, Luca
    Di Vita, Davide
    Canclini, Fabio
    Carminati, Marco
    Camera, Franco
    Fiorini, Carlo
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1041
  • [8] Embedded Port Infrastructure Inspection using Artificial Intelligence
    Vigne, Nicolas
    Barrere, Remi
    Blanck, Benjamin
    Steffens, Florian
    Au, Ching Nok
    Riordan, James
    Dooly, Gerard
    [J]. OCEANS 2023 - LIMERICK, 2023,
  • [9] cREAtIve: Reconfigurable Embedded Artificial Intelligence Invited Paper
    Bahrebar, Poona
    Denis, Leon
    Bonnaerens, Maxim
    Coddens, Kristof
    Dambre, Joni
    Favoreel, Wouter
    Khvastunov, Illia
    Munteanu, Adrian
    Hung Nguyen-Duc
    Schulte, Stefan
    Stroobandt, Dirk
    Valvekens, Ramses
    Van den Broeck, Nick
    Verbruggen, Geert
    [J]. PROCEEDINGS OF THE 18TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2021 (CF 2021), 2021, : 194 - 199
  • [10] Curriculum Design for a Multidisciplinary Embedded Artificial Intelligence Course
    Ergezer, Mehmet
    Kucharski, Bryon
    Carpenter, Aaron
    [J]. SIGCSE'18: PROCEEDINGS OF THE 49TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, 2018, : 1087 - 1088