Tree-width and dimension

被引:20
|
作者
Joret, Gwenael [1 ]
Micek, Piotr [2 ]
Milans, Kevin G. [4 ]
Trotter, William T. [3 ]
Walczak, Bartosz [2 ]
Wang, Ruidong [3 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic, Australia
[2] Jagiellonian Univ, Theoret Comp Sci Dept, Fac Math & Comp Sci, Krakow, Poland
[3] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[4] West Virginia Univ, Dept Math, Morgantown, WV 26505 USA
关键词
ORDER DIMENSION; COMPLEXITY;
D O I
10.1007/s00493-014-3081-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Over the last 30 years, researchers have investigated connections between dimension for posets and planarity for graphs. Here we extend this line of research to the structural graph theory parameter tree-width by proving that the dimension of a finite poset is bounded in terms of its height and the tree-width of its cover graph.
引用
收藏
页码:431 / 450
页数:20
相关论文
共 50 条
  • [21] Partitioning graphs of bounded tree-width
    Ding, GL
    Oporowski, B
    Sanders, DP
    Vertigan, D
    COMBINATORICA, 1998, 18 (01) : 1 - 12
  • [22] Multiplicities of eigenvalues and tree-width of graphs
    de Verdiere, YC
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (02) : 121 - 146
  • [23] TREE-WIDTH FOR FIRST ORDER FORMULAE
    Adler, Isolde
    Weyer, Mark
    LOGICAL METHODS IN COMPUTER SCIENCE, 2012, 8 (01)
  • [24] Tree-width of hypergraphs and surface duality
    Mazoit, Frederic
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (03) : 671 - 687
  • [25] Tree-Width for First Order Formulae
    Adler, Isolde
    Weyer, Mark
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2009, 5771 : 71 - +
  • [26] Layout of graphs with bounded tree-width
    Dujmovic, V
    Morin, P
    Wood, DR
    SIAM JOURNAL ON COMPUTING, 2005, 34 (03) : 553 - 579
  • [27] Tree-width and the monadic quantifier hierarchy
    Makowsky, JA
    Mariño, JP
    THEORETICAL COMPUTER SCIENCE, 2003, 303 (01) : 157 - 170
  • [28] Partitioning Graphs of Bounded Tree-Width
    Guoli Ding
    Bogdan Oporowski
    Daniel P. Sanders
    Dirk Vertigan
    Combinatorica, 1998, 18 : 1 - 12
  • [29] Deciding clique-width for graphs of bounded tree-width
    Espelage, W
    Gurski, F
    Wanke, E
    ALGORITHMS AND DATA STRUCTURES, 2001, 2125 : 87 - 98
  • [30] Tree-width, clique-minors, and eigenvalues
    Hong, Y
    DISCRETE MATHEMATICS, 2004, 274 (1-3) : 281 - 287