Experimental and kinetics analyses of a typical Zhundong coal reaction in O2/CO2/H2O atmosphere

被引:5
|
作者
Liu, Xiaoqian [1 ]
Liu, Yinhe [1 ]
Lv, Qiang [1 ]
Wang, Bo [1 ]
Zhang, Yandi [1 ]
Zhou, Yao [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Zhundong Char; O-2/CO2/H2O; Oxy-fuel combustion; Interaction; Reactivity; Kinetics; OXY-FUEL COMBUSTION; PULVERIZED COAL; PARTICLE; TEMPERATURE; IGNITION; O-2/N-2; GASIFICATION; DEVOLATILIZATION; OXIDATION; BEHAVIOR;
D O I
10.1016/j.fuel.2021.122969
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Oxy-fuel combustion is one of the most potential carbon capture technologies. The abundant high alkali Zhundong coal will serve as the backbone of energy supply for a long time in China. Oxy-fuel combustion may reduce the evaporation of alkali metals by adjusting combustion temperature, so as to alleviate the slagging and fouling of heating surface for Zhundong coal-fired boilers. The gasification of coal by high contents of CO2 and H2O in the flue gas interacts with the oxidation reaction by O-2, which affects the combustion reactivity and the final combustion efficiency. However, the existing kinetic models usually ignore the gasification by CO2 and H2O, which results in insufficient prediction ability. In this study, the interaction between gasification and oxidation was obtained on a fixed bed experimental platform, and the co-gasification reaction model of CO2 and H2O was established based on the Langmuir-Hinshelwood model. The results show that there was no competition between char-O-2 and char-CO2 (or H2O), while CO2 and H2O competed at some active sites when reacting with char. Then, based on the in-situ optical measurement system a novel method considering the chemical cooling effect for calculating char-O-2 reaction rate under high temperature and complex atmosphere (O-2/CO2/H2O) was proposed, and finally a comprehensive high temperature gasification reaction model was established. The reaction rate increased with the increasing flue gas temperature and O-2 concentration. As CO2 concentration increased, the reaction rate first increased slightly and then decreased. The reaction rate reached the minimum value at 26% H2O concentration.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Comparison of the Reburning Chemistry in O2/N2, O2/CO2, and O2/H2O Atmospheres
    He, Yizhuo
    Luo, Jianghui
    Li, Yangguang
    Jia, Huiqiao
    Wang, Feng
    Zou, Chun
    Zheng, Chuguang
    [J]. ENERGY & FUELS, 2017, 31 (10) : 11404 - 11412
  • [32] CO2 –H2O–coal interaction of CO2 storage in coal beds
    Gao Shasha
    Wang Yanbin
    Jia Lilong
    Wang Hongjie
    Yuan Jun
    Wang Xianghao
    [J]. International Journal of Mining Science and Technology, 2013, 23 (04) : 519 - 523
  • [33] Emission characteristics of coal combustion in different O2/N2, O2/CO2 and O2/RFG atmosphere
    Chen, Jyh-Cherng
    Liu, Zhen-Shu
    Huang, Jian-Sheng
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2007, 142 (1-2) : 266 - 271
  • [34] AES STUDY OF THE ADSORPTION OF O2, CO, CO2, AND H2O ON INDIUM
    ROSSNAGEL, SM
    DYLLA, HF
    COHEN, SA
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1979, 16 (02): : 558 - 561
  • [35] CO2 and H2O gasification kinetics of a coal char in the presence of methane
    Sun, Zhi-qiang
    Wu, Jin-hu
    Zhang, Dongke
    [J]. ENERGY & FUELS, 2008, 22 (04) : 2160 - 2165
  • [36] Kinetics investigation on the combustion of biochar in O2/CO2 atmosphere
    Wang, Xuebin
    Hu, Zhongfa
    Deng, Shuanghui
    Wang, Yibin
    Tan, Houzhang
    [J]. ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2015, 34 (03) : 923 - 932
  • [37] Experimental study of the flame propagation characteristics of pulverized coal in an O2/CO2 atmosphere
    Zhao, Yijun
    Zhang, Wenda
    Feng, Dongdong
    Wang, Pengxiang
    Sun, Shaozeng
    Wu, Jiangquan
    Li, Pengfei
    [J]. FUEL, 2020, 262
  • [38] Total pressure effects on chemical reaction rates of chars with O2, CO2 and H2O
    Roberts, DG
    Harris, DJ
    Wall, TF
    [J]. FUEL, 2000, 79 (15) : 1997 - 1998
  • [39] Behavior of Chlorine in HCl/H2O/O2/CO2/N2 Reaction System
    Cheng, Yi
    Sato, Atsushi
    Ninomiya, Yoshihiko
    [J]. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2008, 41 (06) : 519 - 524
  • [40] Effects of O2, CO2 and H2O on the Adsorption of NO on Cerium Oxide
    Yoshikawa, Kohei
    Aoyagi, Takuya
    Onodera, Taigo
    Takahashi, Eri
    Naito, Takashi
    Miyake, Tatsuya
    Kondo, Junko Nomura
    [J]. JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2020, 63 (03) : 158 - 162