Derivation of the quantum Langevin equation

被引:6
|
作者
vanKampen, NG
机构
关键词
D O I
10.1016/S0167-7322(97)00002-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The phenomenological approach to the Langevin equation breaks down for quantum systems. It is necessary to take into account explicitly an external bath, which causes the damping and fluctuations. The question then is whether there exists an autonomous equation of motion for the system itself, with or without a memory kernel. Some simple cases are listed and for one case the derivation of Langevin's equation is carried out. It is compared to the exact result, which leads to the following conclusions. The equation is true only to the lowest order in the interaction between system and bath. In general there is a memory kernel but in two special cases the damping reduces to a simple proportionality with a friction coefficient (''Ohmic case''). (C) 1997 Elsevier Science B.V.
引用
收藏
页码:97 / 105
页数:9
相关论文
共 50 条
  • [41] Exact derivation of the Langevin and master equations for harmonic quantum Brownian motion
    Garcia-Alvarez, ET
    Gaioli, FH
    [J]. PHYSICA A, 1998, 257 (1-4): : 298 - 302
  • [42] LOCALIZED SOLUTION OF A SIMPLE NONLINEAR QUANTUM LANGEVIN EQUATION
    DIOSI, L
    [J]. PHYSICS LETTERS A, 1988, 132 (05) : 233 - 236
  • [43] Berry phase in open quantum systems: a quantum Langevin equation approach
    G. De Chiara
    A. Łoziński
    G. M. Palma
    [J]. The European Physical Journal D, 2007, 41 : 179 - 183
  • [44] ON THE GENERALIZED LANGEVIN EQUATION - CLASSICAL AND QUANTUM-MECHANICAL
    CORTES, E
    WEST, BJ
    LINDENBERG, K
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1985, 82 (06): : 2708 - 2717
  • [45] Extension to the quantum Langevin equation in the incoherent hopping regime
    Green, AG
    [J]. PHYSICAL REVIEW B, 2006, 73 (14):
  • [46] QUANTUM LANGEVIN EQUATION IN THE WEAK-COUPLING LIMIT
    ACCARDI, L
    FRIGERIO, A
    LU, YG
    [J]. LECTURE NOTES IN MATHEMATICS, 1990, 1442 : 1 - 16
  • [47] Quantum annealing and the Schrodinger-Langevin-Kostin equation
    de Falco, Diego
    Tamascelli, Dario
    [J]. PHYSICAL REVIEW A, 2009, 79 (01):
  • [48] Quantum collective creep: A quasiclassical Langevin equation approach
    Gorokhov, DA
    Fisher, DS
    Blatter, G
    [J]. PHYSICAL REVIEW B, 2002, 66 (21): : 1 - 23
  • [49] Berry phase in open quantum systems: a quantum Langevin equation approach
    De Chiara, G.
    Lozinski, A.
    Palma, G. M.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2007, 41 (01): : 179 - 183
  • [50] Heisenberg-Langevin versus quantum master equation
    Boyanovsky, Daniel
    Jasnow, David
    [J]. PHYSICAL REVIEW A, 2017, 96 (06)