ELLIPTIC FIBRATIONS AND SYMPLECTIC AUTOMORPHISMS ON K3 SURFACES

被引:27
|
作者
Garbagnati, Alice [1 ]
Sarti, Alessandra [2 ]
机构
[1] Univ Milan, Dipartimento Matemat, Milan, Italy
[2] Univ Poitiers, Lab Math & Applicat, Poitiers, France
关键词
Elliptic fibrations; K3; surfaces; Lattices; Symplectic automorphisms; CURVES;
D O I
10.1080/00927870902828785
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nikulin has classified all finite abelian groups acting symplectically on a K3 surface and he has shown that the induced action on the K3 lattice U(3) circle plus E(8)(-1)(2) depends only on the group but not on the K3 surface. For all the groups in the list of Nikulin we compute the invariant sublattice and its orthogonal complement by using some special elliptic K3 surfaces.
引用
收藏
页码:3601 / 3631
页数:31
相关论文
共 50 条
  • [41] The mirror symmetry of K3 surfaces with non-symplectic automorphisms of prime order
    Comparin, Paola
    Lyons, Christopher
    Priddis, Nathan
    Suggs, Rachel
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 18 (06) : 1335 - 1368
  • [42] K3 surfaces with non-symplectic automorphisms of 2-power order
    Schuett, Matthias
    JOURNAL OF ALGEBRA, 2010, 323 (01) : 206 - 223
  • [44] On symplectic quotients of K3 surfaces
    Çinkir, Z
    Önsiper, H
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (04): : 533 - 538
  • [45] Normal functions, Picard-Fuchs equations, and elliptic fibrations on K3 surfaces
    Chen, Xi
    Doran, Charles
    Kerr, Matt
    Lewis, James D.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 721 : 43 - 79
  • [46] Classifications of Elliptic Fibrations of a Singular K3 Surface
    Bertin, Marie Jose
    Garbagnati, Alice
    Hortsch, Ruthi
    Lecacheux, Odile
    Mase, Makiko
    Salgado, Cecilia
    Whitcher, Ursula
    WOMEN IN NUMBERS EUROPE: RESEARCH DIRECTIONS IN NUMBER THEORY, 2015, 2 : 17 - 49
  • [47] Finite subgroups of automorphisms of K3 surfaces
    Brandhorst, Simon
    Hofmann, Tommy
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [48] K3 Surfaces with Order 11 Automorphisms
    Oguiso, Keiji
    Zhang, De-Qi
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2011, 7 (04) : 1657 - 1673
  • [49] Non-symplectic automorphisms of K3 surfaces with one-dimensional moduli space
    Artebani, Michela
    Comparin, Paola
    Valdes, Maria Elisa
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (04) : 1161 - 1198
  • [50] G2-manifolds from K3 surfaces with non-symplectic automorphisms
    Pumperla, Max
    Reidegeld, Frank
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (11) : 2214 - 2226