Growth of Ultrathin Zn Compound Buffer Layer by a Chemical Bath Deposition for Cu(In,Ga)Se2 Solar Cells

被引:11
|
作者
Larina, Liudmila [1 ]
Shin, Dong Hyeop [1 ]
Tsvetkov, Nikolay [1 ]
Ahn, Byung Tae [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
关键词
THIN-FILMS; ZNS(O; OH); NANOSTRUCTURES; CDS;
D O I
10.1149/1.3212838
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A Zn compound buffer layer for Cu(In,Ga)Se(2) (CIGS) solar cells was grown from an alkaline aqueous solution using chemical bath deposition (CBD). To improve the film quality and exclude the cracks in the film, processing parameters such as reagent concentration, deposition time, and temperature profile were varied. Under the optimized CBD process, a uniform and crack-free film was grown on a CIGS substrate with thicknesses ranging from 10 to 60 nm. The controllable thickness of the film was as low as 10 nm. X-ray diffraction and Auger analysis showed that the Zn compound film was in an amorphous state with the ZnS(x)(OH)(y)O(z) composition. A 26% increase in the optical transmittance in the spectral range of 380-600 nm, as compared to a standard CdS buffer layer, was achieved. Finally, by optimization of the CBD process, we formed buffer layers, which enabled the transmission of the short wavelength of the solar spectrum for CIGS absorption. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3212838] All rights reserved.
引用
收藏
页码:D469 / D473
页数:5
相关论文
共 50 条
  • [1] Optimization of the ZnS Buffer Layer by Chemical Bath Deposition for Cu(In,Ga)Se2 Solar Cells
    Jeon, Dong-Hwan
    Hwang, Dae-Kue
    Kim, Dae-Hwan
    Kang, Jin-Kyu
    Lee, Chang-Seop
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (05) : 5398 - 5402
  • [2] Fast chemical bath deposition of Zn(O,S) buffer layers for Cu(In,Ga)Se2 solar cells
    Buffiere, M.
    Harel, S.
    Arzel, L.
    Deudon, C.
    Barreau, N.
    Kessler, J.
    [J]. THIN SOLID FILMS, 2011, 519 (21) : 7575 - 7578
  • [3] Cu(In,Ga)Se2 solar cell with Zn(S,O) as the buffer layer fabricated by a chemical bath deposition method
    Lin, Xinlu
    Li, Hui
    Qu, Fei
    Gu, Hongwei
    Wang, Wenjing
    [J]. SOLAR ENERGY, 2018, 171 : 130 - 141
  • [4] Chemical Bath Deposition of Zn1-xSnxOy Films as Buffer Layers for Cu(In,Ga)Se2 Solar Cells
    Garzon, Diego A.
    Rossi, Christian
    Khatri, Ishwor
    Soggia, Francesco
    Caha, Ihsan
    Deepak, Francis Leonard
    Colombara, Diego
    Sadewasser, Sascha
    [J]. SOLAR RRL, 2023, 7 (12):
  • [5] Numerical analysis of ultrathin Cu(In,Ga)Se2 solar cells with Zn(O,S) buffer layer
    Tcheum, G. L. Mbopda
    Ngoupo, A. Teyou
    Ouedraogo, S.
    Guirdjebaye, N.
    Ndjaka, J. M. B.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [6] Cu(In,Ga)Se2 thin film solar cell with Zn(S,O) buffer layer fabricated by a chemical bath deposition method
    Lin, Xinlu
    Li, Hui
    Qu, Fei
    Gu, Hongwei
    Wang, Wenjing
    [J]. 2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC), 2018, : 3006 - 3008
  • [7] Effects of substrate orientation and solution movement in chemical bath deposition on Zn(O,S) buffer layer and Cu(In,Ga)Se2 thin film solar cells
    Li, Jianmin
    Huang, Lan
    Hou, Jie
    Wu, Xiao
    Niu, Jiabin
    Chen, Guilin
    Gong, Junbo
    Kong, Yifan
    Xiao, Xudong
    [J]. NANO ENERGY, 2019, 58 : 427 - 436
  • [8] Atmospheric spatial atomic layer deposition of Zn(O,S) buffer layer for Cu(In,Ga)Se2 solar cells
    Frijters, C. H.
    Poodt, P.
    Illiberi, A.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 155 : 356 - 361
  • [9] Atomic layer deposition of ZnInxSy buffer layers for Cu(In,Ga)Se2 solar cells
    Genevee, P.
    Darga, A.
    Longeaud, C.
    Lincot, D.
    Donsanti, F.
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2015, 7 (01)
  • [10] Atomic layer deposition of Zn1-xMgxO buffer layers for Cu(In,Ga)Se2 solar cells
    Toerndahl, T.
    Platzer-Bjoerkman, C.
    Kessler, J.
    Edoff, M.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2007, 15 (03): : 225 - 235