Heterogeneous integration of single-crystalline complex-oxide membranes

被引:267
|
作者
Kum, Hyun S. [1 ]
Lee, Hyungwoo [2 ]
Kim, Sungkyu [1 ]
Lindemann, Shane [2 ]
Kong, Wei [1 ]
Qiao, Kuan [1 ]
Chen, Peng [1 ]
Irwin, Julian [3 ]
Lee, June Hyuk [4 ]
Xie, Saien [5 ,6 ]
Subramanian, Shruti [7 ]
Shim, Jaewoo [1 ]
Bae, Sang-Hoon [1 ]
Choi, Chanyeol [8 ]
Ranno, Luigi [1 ,9 ]
Seo, Seungju [1 ]
Lee, Sangho [1 ,9 ]
Bauer, Jackson [9 ]
Li, Huashan [10 ]
Lee, Kyusang [11 ,12 ]
Robinson, Joshua A. [7 ]
Ross, Caroline A. [9 ]
Schlom, Darrell G. [5 ,6 ]
Rzchowski, Mark S. [3 ]
Eom, Chang-Beom [2 ]
Kim, Jeehwan [1 ,9 ,13 ,14 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[4] Korea Atom Energy Res Inst, Neutron Sci Div, Daejeon, South Korea
[5] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[6] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY USA
[7] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[8] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[9] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[10] Sun Yat Sen Univ, Sino French Inst Nucl Energy & Technol, Beijing, Peoples R China
[11] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA USA
[12] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA USA
[13] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[14] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
GRAPHENE; FILMS; PIEZOELECTRICITY; INTERFACE;
D O I
10.1038/s41586-020-1939-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Complex-oxide materials exhibit a vast range of functional properties desirable for next-generation electronic, spintronic, magnetoelectric, neuromorphic, and energy conversion storage devices(1-4). Their physical functionalities can be coupled by stacking layers of such materials to create heterostructures and can be further boosted by applying strain(5-7). The predominant method for heterogeneous integration and application of strain has been through heteroepitaxy, which drastically limits the possible material combinations and the ability to integrate complex oxides with mature semiconductor technologies. Moreover, key physical properties of complex-oxide thin films, such as piezoelectricity and magnetostriction, are severely reduced by the substrate clamping effect. Here we demonstrate a universal mechanical exfoliation method of producing freestanding single-crystalline membranes made from a wide range of complex-oxide materials including perovskite, spinel and garnet crystal structures with varying crystallographic orientations. In addition, we create artificial heterostructures and hybridize their physical properties by directly stacking such freestanding membranes with different crystal structures and orientations, which is not possible using conventional methods. Our results establish a platform for stacking and coupling three-dimensional structures, akin to two-dimensional material-based heterostructures, for enhancing device functionalities(8,9).
引用
收藏
页码:75 / +
页数:19
相关论文
共 50 条
  • [41] Heterogeneous integration of high-k complex-oxide gate dielectrics on wide band-gap high-electron-mobility transistors
    Jongho Ji
    Jeong Yong Yang
    Sangho Lee
    Seokgi Kim
    Min Jae Yeom
    Gyuhyung Lee
    Heechang Shin
    Sang-Hoon Bae
    Jong-Hyun Ahn
    Sungkyu Kim
    Jeehwan Kim
    Geonwook Yoo
    Hyun S. Kum
    Communications Engineering, 3 (1):
  • [42] Heterogeneous Integration of Doped Crystalline Zirconium Oxide for Photonic Applications
    Ruiz-Caridad, Alicia
    Marcaud, Guillaume
    Duran-Valdeiglesias, Elena
    Ramirez, Joan Manel
    Zhang, Jianhao
    Alonso-Ramos, Carlos
    LeRoux, Xavier
    Largeau, Ludovic
    Serna, Samuel
    Dubreuil, Nicolas
    Matzen, Sylvia
    Maroutian, Thomas
    Lecoeur, Philippe
    Marris-Morini, Delphine
    Cassan, Eric
    Vivien, Laurent
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2022, 28 (03)
  • [43] Lattice Energy Determination for Polycrystalline Oxide Ceramics and Single-Crystalline Counterparts
    Kunal B. Modi
    Journal of Superconductivity and Novel Magnetism, 2016, 29 : 2287 - 2297
  • [44] Amorphous lead oxide nanotubes filled partially with single-crystalline lead
    Lee, JS
    Sim, SK
    Kim, KH
    Cho, K
    Kim, S
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2005, 122 (02): : 85 - 89
  • [45] Electrical Network of Single-Crystalline Metal Oxide Nanoclusters Wired by π-Molecules
    Tsunashima, Ryo
    Iwamoto, Yoshifumi
    Baba, Yusuke
    Kato, Chisato
    Ichihashi, Katsuya
    Nishihara, Sadafumi
    Inoue, Katsuya
    Ishiguro, Katsuya
    Song, Yu-Fei
    Akutagawa, Tomoyuki
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (42) : 11228 - 11231
  • [46] Lattice Energy Determination for Polycrystalline Oxide Ceramics and Single-Crystalline Counterparts
    Modi, Kunal B.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2016, 29 (09) : 2287 - 2297
  • [47] Preparation and Investigation of Micro-Transfer-Printable Single-Crystalline InP Coupons for Heterogeneous Integration of III-V on Si
    Peracchi, Isabella
    Richter, Carsten
    Schulz, Tobias
    Martin, Jens
    Kwasniewski, Albert
    Klaeger, Sebastian
    Frank-Rotsch, Christiane
    Steglich, Patrick
    Stolze, Karoline
    CRYSTALS, 2023, 13 (07)
  • [48] Ce-induced single-crystalline hierarchical zinc oxide nanobrushes
    Gong, He-Chun
    Zhong, Jia-Fu
    Zhou, Shao-Min
    Zhang, Bin
    Li, Zhao-Han
    Du, Zu-Liang
    SUPERLATTICES AND MICROSTRUCTURES, 2008, 44 (02) : 183 - 190
  • [49] Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties
    Chen, Yuping
    Lu, Chunliang
    Xu, Lin
    Ma, Ying
    Hou, Wenhua
    Zhu, Jun-Jie
    CRYSTENGCOMM, 2010, 12 (11): : 3740 - 3747
  • [50] Nanoscale modification of one-dimensional single-crystalline cuprous oxide
    Das, Pritam
    Rajbhar, Manoj K.
    Elliman, Robert Glen
    Moeller, Wolfhard
    Facsko, Stefan
    Chatterjee, Shyamal
    NANOTECHNOLOGY, 2019, 30 (36)