ON THE OPTIMAL MAP IN THE 2-DIMENSIONAL RANDOM MATCHING PROBLEM

被引:11
|
作者
Ambrosio, Luigi [1 ]
Glaudo, Federico [2 ]
Trevisan, Dario [3 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[2] ETH, Ramistr 101, CH-8092 Zurich, Switzerland
[3] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
基金
欧洲研究理事会;
关键词
Minimum matching; random matching; optimal transport; Hamilton-Jacobi; stability; POLAR FACTORIZATION; COST;
D O I
10.3934/dcds.2019304
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, on a 2-dimensional compact manifold, the optimal transport map in the semi-discrete random matching problem is wellapproximated in the L-2-norm by identity plus the gradient of the solution to the Poisson problem - Delta f(n,t) = mu(n,t) - 1, where mu(n,t) is an appropriate regularization of the empirical measure associated to the random points. This shows that the ansatz of [8] is strong enough to capture the behavior of the optimal map in addition to the value of the optimal matching cost. As part of our strategy, we prove a new stability result for the optimal transport map on a compact manifold.
引用
收藏
页码:7291 / 7308
页数:18
相关论文
共 50 条