Rough bilinear singular integrals

被引:27
|
作者
Grafakos, Loukas [1 ]
He, Danqing [2 ]
Honzik, Petr [3 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Sun Yat Sen Zhongshan Univ, Dept Math, Guangzhou, Guangdong, Peoples R China
[3] Charles Univ Prague, Dept Math, Prague 11636 1, Czech Republic
关键词
Singular integrals; Multilinear operators; Rough operators; WEAK TYPE 1; HILBERT-TRANSFORMS; UNIFORM BOUNDS; COMMUTATORS; OPERATORS;
D O I
10.1016/j.aim.2017.12.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the rough bilinear singular integral, introduced by Coifman and Meyer [8], T-Omega (f, g)(x) = p.v. integral R-n integral R-n vertical bar(y, z)(-2n) Omega((y, z)/vertical bar(y, z)vertical bar)f(x - y)g(x - z)dydz, when Omega is a function in L-q(S2n-1) with vanishing integral and 2 <= q <= infinity. When q = infinity we obtain boundedness for To from L-p1 (R-n) x L-p2 (R-n) to L-p (R-n) when 1 < p1, p2 < infinity and 1/p = 1/p1 + 1/p2. For q = 2 we obtain that T Omega is bounded from L-2(R-n) x L-2(R-n) x L-1(R-n). For q between 2 and infinity we obtain the analogous boundedness on a set of indices around the point (1/2,1/2,1). To obtain our results we introduce a new bilinear technique based on tensor-type wavelet decompositions. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:54 / 78
页数:25
相关论文
共 50 条
  • [1] Rough maximal bilinear singular integrals
    Buriankova, Eva
    Honzik, Petr
    COLLECTANEA MATHEMATICA, 2019, 70 (03) : 431 - 446
  • [2] Rough maximal bilinear singular integrals
    Eva Buriánková
    Petr Honzík
    Collectanea Mathematica, 2019, 70 : 431 - 446
  • [3] Improved estimates for bilinear rough singular integrals
    He, Danqing
    Park, Bae Jun
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 1951 - 1978
  • [4] Improved estimates for bilinear rough singular integrals
    Danqing He
    Bae Jun Park
    Mathematische Annalen, 2023, 386 : 1951 - 1978
  • [5] Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals
    Grafakos, Loukas
    Wang, Zhidan
    Xue, Qingying
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (06)
  • [6] Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals
    Loukas Grafakos
    Zhidan Wang
    Qingying Xue
    Journal of Fourier Analysis and Applications, 2022, 28
  • [7] COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS
    COIFMAN, RR
    MEYER, Y
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) : 315 - 331
  • [8] Weighted estimates for rough bilinear singular integrals via sparse domination
    Barron, Alexander
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 779 - 811
  • [9] Rough Bilinear Hypersingular Integrals
    Cui, Yige
    Liu, Honghai
    Si, Zengyan
    Wang, Hanbin
    POTENTIAL ANALYSIS, 2023, 59 (04) : 1547 - 1569
  • [10] Rough bilinear fractional integrals
    Ding, Y
    Lin, CC
    MATHEMATISCHE NACHRICHTEN, 2002, 246 : 47 - 52