Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals

被引:2
|
作者
Grafakos, Loukas [1 ]
Wang, Zhidan [2 ,3 ]
Xue, Qingying [2 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[3] Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
基金
国家重点研发计划;
关键词
Sparse domination; Rough bilinear singular integrals; A(p; r); weights; WEAK-TYPE 1,1; 1; BOUNDS; OPERATORS;
D O I
10.1007/s00041-022-09973-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let r > 4/3 and let Omega is an element of L-r (S2n-1) have vanishing integral. We show that the bilinear rough singular integral T-Omega(f, g((x) = p.v.integral(Rn)integral(Rn) Omega((y, z)/vertical bar(y, z vertical bar)/vertical bar(y, z)vertical bar(2n) f(x - y)g(x - z)dydz, satisfies a sparse bound by (p, p, p)-averages, where p is bigger than a certain number explicitly related to r and n. As a consequence we deduce certain quantitative weighted estimates for bilinear homogeneous singular integrals associated with rough homogeneous kernels.
引用
下载
收藏
页数:27
相关论文
共 50 条
  • [1] Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals
    Loukas Grafakos
    Zhidan Wang
    Qingying Xue
    Journal of Fourier Analysis and Applications, 2022, 28
  • [2] Weighted estimates for rough bilinear singular integrals via sparse domination
    Barron, Alexander
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 779 - 811
  • [3] Weighted estimates for maximal bilinear rough singular integrals via sparse dominations
    Zhidan Wang
    Qingying Xue
    Xinchen Duan
    Collectanea Mathematica, 2022, 73 : 55 - 73
  • [4] Weighted estimates for maximal bilinear rough singular integrals via sparse dominations
    Wang, Zhidan
    Xue, Qingying
    Duan, Xinchen
    COLLECTANEA MATHEMATICA, 2022, 73 (01) : 55 - 73
  • [5] A SPARSE DOMINATION PRINCIPLE FOR ROUGH SINGULAR INTEGRALS
    Conde-Alonso, Jose M.
    Culiuc, Amalia
    Di Plinio, Francesco
    Ou, Yumeng
    ANALYSIS & PDE, 2017, 10 (05): : 1255 - 1284
  • [6] Improved estimates for bilinear rough singular integrals
    He, Danqing
    Park, Bae Jun
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 1951 - 1978
  • [7] Improved estimates for bilinear rough singular integrals
    Danqing He
    Bae Jun Park
    Mathematische Annalen, 2023, 386 : 1951 - 1978
  • [8] Weighted estimates for rough oscillatory singular integrals
    Harri Ojanen
    Journal of Fourier Analysis and Applications, 2000, 6 : 427 - 436
  • [9] Weighted estimates for rough oscillatory singular integrals
    Ojanen, H
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2000, 6 (04) : 427 - 436
  • [10] WEIGHTED ESTIMATES FOR CERTAIN ROUGH SINGULAR INTEGRALS
    Zhang, Chunjie
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (06) : 1561 - 1576