A NONCOMMUTATIVE BORSUK-ULAM THEOREM FOR NATSUME-OLSEN SPHERES

被引:5
|
作者
Passer, Benjamin W. [1 ]
机构
[1] Washington Univ, Dept Math, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
C*-algebra; noncommutative; sphere; Borsuk-Ulam; K-theory; group action; deformation; FINITE; MANIFOLDS;
D O I
10.7900/jot.2015apr21.2071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The odd theta-deformed spheres are C*-algebras that admit natural actions by finite cyclic groups, and if one of these actions is fixed, any equivariant homomorphism between two spheres of the same dimension induces a nontrivial map on odd K-theory. This result is an extended, noncommutative Borsuk-Ulam theorem in odd dimension, and just as in the topological case, this theorem has many ( almost) equivalent formulations for theta-deformed spheres of arbitrary dimension. We also present theorems on graded Banach algebras, motivated by algebraic Borsuk-Ulam results of A. Taghavi.
引用
收藏
页码:337 / 366
页数:30
相关论文
共 50 条
  • [41] The endpoint multilinear Kakeya theorem via the Borsuk-Ulam theorem
    Carbery, Anthony
    Valdimarsson, Stefan Ingi
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (07) : 1643 - 1663
  • [42] A Borsuk-Ulam theorem for compact Lie group actions
    Biasi, C
    de Mattos, D
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (01): : 127 - 137
  • [43] An infinite-dimensional version of the Borsuk-Ulam theorem
    B. D. Gel’man
    [J]. Functional Analysis and Its Applications, 2004, 38 : 239 - 242
  • [44] A Borsuk-Ulam Theorem for compact Lie group actions
    Carlos Biasi
    Denise de Mattos*
    [J]. Bulletin of the Brazilian Mathematical Society, 2006, 37 : 127 - 137
  • [45] BORSUK-ULAM THEOREM FOR ANY COMPACT LIE GROUP
    MARZANTOWICZ, W
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 49 : 195 - 208
  • [46] An infinite-dimensional version of the Borsuk-Ulam theorem
    Gel'man, BD
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2004, 38 (04) : 239 - 242
  • [47] A COMBINATORIAL PROOF OF THE BORSUK-ULAM ANTIPODAL POINT THEOREM
    WEISS, B
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1989, 66 (1-3) : 364 - 368
  • [48] CONFIGURATION-LIKE SPACES AND BORSUK-ULAM THEOREM
    COHEN, F
    LUSK, EL
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 56 (APR) : 313 - 317
  • [49] Some combinatorial and algorithmic applications of the Borsuk-Ulam theorem
    Roy, Sambuddha
    Steiger, William
    [J]. GRAPHS AND COMBINATORICS, 2007, 23 (Suppl 1) : 331 - 341
  • [50] Z2-bordism and the Borsuk-Ulam Theorem
    Crabb, M. C.
    Goncalves, D. L.
    Libardi, A. K. M.
    Pergher, P. L. Q.
    [J]. MANUSCRIPTA MATHEMATICA, 2016, 150 (3-4) : 371 - 381