A proper orthogonal decomposition method for nonlinear flows with deforming meshes

被引:18
|
作者
Freno, Brian A. [1 ]
Cizmas, Paul G. A. [1 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
关键词
Proper orthogonal decomposition; Reduced-order modeling; Computational fluid dynamics; Deforming mesh; REDUCED-ORDER MODELS; COMPRESSIBLE FLOWS; POD; ALGORITHM;
D O I
10.1016/j.ijheatfluidflow.2014.07.001
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents a proper orthogonal decomposition (POD) method that uses dynamic basis functions. The dynamic functions are of a prescribed form and do not explicitly depend on time but rather on parameters associated with flow unsteadiness. This POD method has been developed for modeling nonlinear flows with deforming meshes but can also be applied to fixed meshes. The method is illustrated for subsonic and transonic flows in channels with fixed and deforming meshes. This method properly captured flow nonlinearities and shock motion for cases in which the classical POD method failed. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:145 / 159
页数:15
相关论文
共 50 条
  • [41] Proper Orthogonal Decomposition Analysis of Separated and Reattached Pressure Gradient Turbulent Flows
    Shah, Mohammad K.
    Tachie, Mark F.
    [J]. AIAA JOURNAL, 2009, 47 (11) : 2616 - 2631
  • [42] The influence of control on proper orthogonal decomposition of wall-bounded turbulent flows
    Prabhu, RD
    Collis, SS
    Chang, Y
    [J]. PHYSICS OF FLUIDS, 2001, 13 (02) : 520 - 537
  • [43] Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows
    J. Borée
    [J]. Experiments in Fluids, 2003, 35 : 188 - 192
  • [44] Sensitivity based Proper Orthogonal Decomposition for Nonlinear Parameter Dependent Systems
    Jarvis, Christopher
    [J]. 2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 135 - 140
  • [45] Reduced order modeling of nonlinear microstructures through Proper Orthogonal Decomposition
    Gobat, Giorgio
    Opreni, Andrea
    Fresca, Stefania
    Manzoni, Andrea
    Frangi, Attilio
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 171
  • [46] Nonlinear dimensionality reduction for parametric problems: A kernel proper orthogonal decomposition
    Diez, Pedro
    Muixi, Alba
    Zlotnik, Sergio
    Garcia-Gonzalez, Alberto
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (24) : 7306 - 7327
  • [47] Parameter identification of nonlinear mechanical systems using proper orthogonal decomposition
    Lenaerts, V
    Kerschen, G
    Golinval, JC
    [J]. IMAC-XVIII: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, PROCEEDINGS, 2000, 4062 : 133 - 139
  • [48] Analysis of nonlinear aeroelastic panel response using proper orthogonal decomposition
    Mortara, SA
    Slater, J
    Beran, P
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2004, 126 (03): : 416 - 421
  • [49] Nonlinear boundary control for the heat equation utilizing proper orthogonal decomposition
    Diwoky, F
    Volkwein, S
    [J]. FAST SOLUTION OF DISCRETIZED OPTIMIZATION PROBLEMS, 2001, 138 : 73 - 87
  • [50] An introduction to the proper orthogonal decomposition
    Chatterjee, A
    [J]. CURRENT SCIENCE, 2000, 78 (07): : 808 - 817