STDIN: Spatio-temporal distilled interpolation for electron microscope images

被引:1
|
作者
Wang, Zejin [1 ,2 ]
Sun, Guodong [1 ,2 ]
Li, Guoqing [1 ]
Shen, Lijun [1 ]
Zhang, Lina [1 ]
Han, Hua [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 101408, Peoples R China
[3] Univ Chinese Acad Sci, Sch Future Technol, Beijing 101408, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai 200031, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatio-temporal ensemble; Feedback distillation; Electron microscope interpolation;
D O I
10.1016/j.neucom.2022.07.037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, flow-based approaches have shown considerable success in interpolating video images. However, in contrast to video images, electron microscope (EM) images are further complex due to noise and severe deformation between consecutive sections. Consequently, conventional flow-based interpola-tion algorithms, which assume a single offset per position, are not able to robustly model the movement of such complicated data. To address the aforementioned problems, this study propose a novel EM image interpolation framework that accommodates a range of offsets per location and further distills the inter-mediate features. First, a spatio-temporal ensemble (STE) interpolation module for capturing the missing middle features is presented. The STE is subdivided into two modules: temporal interpolation and resid-ual spatial-correlated block (RSCB). The former predicts the intermediate features in two directions with several offsets at each location. Moreover, the RSCB uses the correlation coefficients for aggregated sam-pling. Thus, even if intermediate features are severely deformed, the STE effectively improves their accu-racy. Second, a stackable feedback distillation block (SFDB) is introduced, which enhances the quality of intermediate features by distilling them from the input, and interpolated images, using a feedback mech-anism. Extensive experiments demonstrate that the proposed method presents a superior performance compared with previous studies, both quantitatively and qualitatively.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:188 / 202
页数:15
相关论文
共 50 条
  • [1] Spatio-Temporal Depth Interpolation (STDI)
    Ochs, Matthias
    Bradler, Henry
    Mester, Rudolf
    [J]. 2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 1742 - 1748
  • [2] Spatio-Temporal Interpolation using gstat
    Graeler, Benedikt
    Pebesma, Edzer
    Heuvelink, Gerard
    [J]. R JOURNAL, 2016, 8 (01): : 204 - 218
  • [3] Adaptive spatio-temporal interpolation methods
    Gao, J
    Revesz, P
    [J]. Proceedings of the 8th Joint Conference on Information Sciences, Vols 1-3, 2005, : 1622 - 1625
  • [4] Spatio-temporal interpolation of total electron content using a GPS network
    Deviren, M. N.
    Arikan, F.
    Arikan, O.
    [J]. RADIO SCIENCE, 2013, 48 (03) : 302 - 309
  • [5] Segmentations of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    [J]. ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 298 - 313
  • [6] Spatio-temporal DeepKriging for interpolation and probabilistic forecasting
    Nag, Pratik
    Sun, Ying
    Reich, Brian J.
    [J]. SPATIAL STATISTICS, 2023, 57
  • [7] SPATIO-TEMPORAL REGISTRATION OF EMBRYO IMAGES
    Guignard, L.
    Godin, C.
    Fiuza, U. -M.
    Hufnagel, L.
    Lemaire, P.
    Malandain, G.
    [J]. 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, : 778 - 781
  • [8] Spatio-temporal Interpolation Methods for Solar Events Metadata
    Roubrahimi, Soukaina Filali
    Aydin, Berkay
    Kempton, Dustin
    Angryk, Rafal
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 3149 - 3157
  • [9] A spatio-temporal fuzzy interpolation algorithm for video deinterlacing
    Jeon, Gwanggil
    Jeong, Jechang
    Lee, Joohyun
    You, Jongmin
    Wu, Chengke
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 1789 - +
  • [10] Approaches to stereoscopic video based on spatio-temporal interpolation
    Garcia, BJ
    [J]. STEREOSCOPIC DISPLAYS AND VIRTUAL REALITY SYSTEMS III, 1996, 2653 : 85 - 95